7 research outputs found

    Review of spectral domain enhanced depth imaging optical coherence tomography of tumors of the choroid

    No full text
    Background: Spectral domain enhanced depth imaging optical coherence tomography (EDI-OCT) can provide anatomic localization of intraocular tumors. Aims: The aim was to identify topographical and intrinsic patterns of choroidal tumors on EDI-OCT. Settings and Design: Retrospective review. Materials and Methods: Analysis of published reports and personal observations using office based EDI-OCT. Results: Using EDI-OCT, choroidal nevus displayed a smooth, dome-shaped topography with overlying retinal pigment epithelium alterations, drusen, and occasional subretinal cleft demonstrating photoreceptor loss. Small choroidal melanoma showed smooth, moderately dome-shaped topography, commonly with overlying shallow subretinal fluid that often depicted "shaggy" photoreceptors. Choroidal metastasis showed a minimally "lumpy, bumpy" surface topography and with overlying subretinal fluid and shaggy photoreceptors. Choroidal hemangioma showed a smooth, dome-shaped topography, with expansion of the affected small, medium, and large choroidal vessels. Choroidal lymphoma showed varying topography with increasing tumor thickness as "flat, rippled, or undulating (seasick)" surface. Choroidal osteoma displayed a smooth undulating surface with visible intralesional horizontal lines suggestive of bone lamellae and occasional horizontal and vertical tubules with intralesional "spongy" flecks. Choroidal melanocytosis appeared as uniformly thickened choroid with increased stromal density surrounding the normal choroidal vascular structures. Conclusions: Enhanced depth imaging-OCT can depict characteristic patterns that are suggestive of various choroidal tumors

    Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults

    No full text
    Background: Spectral domain (SD) enhanced depth imaging optical coherence tomography (EDI-OCT) is a useful tool for anatomic, cross-sectional imaging of retinal conditions. Aims: The aim was to identify characteristic patterns of retinal and retinal pigment epithelial tumors on EDI-OCT in children and adults. Settings and Design: Retrospective review. Materials and Methods: Analysis of published reports and personal observations using office-based EDI-OCT for adults and portable hand-held SD OCT for infants and children. Results: Using EDI-OCT, retinal tumors such as small retinoblastoma, astrocytic hamartoma, and hemangioblastoma arose abruptly from the retina, immediately adjacent to normal retina. Small exophytic retinoblastoma and retinal hemangioblastoma showed the full-thickness, homogeneous retinal disorganization with surrounding normal retina "draping" over the margins. Retinoblastoma occasionally had intralesional cavities and surrounding subretinal fluid. Hemangioblastoma often had adjacent intraretinal edema and subretinal fluid. Astrocytic hamartoma arose within the nerve fiber layer and sometimes with a "moth-eaten" or cavitary appearance. Retinal pigment epithelial (RPE) lesions such as congenital hypertrophy of RPE appeared flat with shadowing, occasional subretinal cleft, and abrupt photoreceptor loss. Congenital simple hamartoma showed an abrupt elevation from the inner retina with crisp, dark posterior shadowing. Combined hamartoma of the retina/RPE showed vitreoretinal traction causing "sawtooth mini-peak" or gently "maxi-peak" folding of the retina. RPE adenoma often produces remote macular edema or epiretinal membrane and the tumor has an irregular, "rugged" surface with deep shadowing. Conclusions: Enhanced depth imaging optical coherence tomography shows characteristic patterns that are suggestive of certain retinal and RPE tumors

    Review of cystic and solid tumors of the iris.

    No full text
    Iris tumors are broadly classified into cystic or solid lesions. The cystic lesions arise from iris pigment epithelium (IPE) or iris stroma. IPE cysts classically remain stable without need for intervention. Iris stromal cyst, especially those in newborns, usually requires therapy of aspiration, possibly with alcohol-induced sclerosis, or surgical resection. The solid tumors included melanocytic and nonmelanocytic lesions. The melanocytic iris tumors include freckle, nevus (including melanocytoma), Lisch nodule, and melanoma. Information from a tertiary referral center revealed that transformation of suspicious iris nevus to melanoma occurred in 4% by 10 years and 11% by 20 years. Risk factors for transformation of iris nevus to melanoma can be remembered using the ABCDEF guide as follows: A=age young (\u3c40 \u3eyears), B=blood (hyphema) in anterior chamber, C=clock hour of mass inferiorly, D=diffuse configuration, E=ectropion, F=feathery margins. The most powerful factors are diffuse growth pattern and hyphema. Tumor seeding into the anterior chamber angle and onto the iris stroma are also important. The nonmelanocytic iris tumors are relatively uncommon and included categories of choristomatous, vascular, fibrous, neural, myogenic, epithelial, xanthomatous, metastatic, lymphoid, leukemic, secondary, and non-neoplastic simulators. Overall, the most common diagnoses in a clinical series include nevus, IPE cyst, and melanoma. In summary, iris tumors comprise a wide spectrum including mostly iris nevus, IPE cyst, and iris melanoma. Risk factors estimating transformation of iris nevus to melanoma can be remembered by the ABCDEF guide
    corecore