38 research outputs found

    Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    Get PDF
    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country’s biomass based power generation potential is estimated as around ∼24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream [U+FB02]ow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys

    Dynamic response of land use and river nutrient concentration to long-term climatic changes

    Get PDF
    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames

    The riparian reactive interface: a climate-sensitive gatekeeper of global nutrient cycles

    Get PDF
    Riparian zones are critical interfaces to freshwater systems, acting as gateways for the conveyance and modification of macronutrient fluxes from land to rivers and oceans. In this paper, we propose that certain riparian conditions and processes (conceptually 'Riparian Reactive Interfaces') may be susceptible to environmental change with consequences of accelerating local nutrient cycling cascading to global impacts on the cycles of carbon (C), nitrogen (N), and phosphorus (P). However, we argue that this concept is insufficiently understood and that research has not yet established robust baseline data to predict and measure change at the key riparian ecosystem interface. We suggest one contributing factor as lack of interdisciplinary study of abiotic and biotic processes linking C, N, and P dynamics and another being emphasis on riparian ecology and restoration that limits frameworks for handling and scaling topography-soil-water-climate physical and biogeochemical observations from plot to large catchment scales. Scientific effort is required now to evaluate riparian current and future controls on global nutrient cycles through multi-nutrient (and controlling element) studies, grounded in landscape frameworks for dynamic riparian behaviour variation, facilitating scaling to catchment predictions

    Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

    Get PDF
    IMPORTANCE: Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. OBJECTIVE: To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. DESIGN, SETTING, AND PARTICIPANTS: Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. EXPOSURES: A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. MAIN OUTCOMES AND MEASURES: Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. RESULTS: The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17 months; 57% male), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial (sensitivity, 100% [95% CI, 100%-100%]) and 27 of 28 patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI, 89.3%-100%]). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial infection, although 94.9% (129/136) received antibiotic treatment. CONCLUSIONS AND RELEVANCE: This study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings

    The riparian reactive interface: a climate-sensitive gatekeeper of global nutrient cycles

    Get PDF
    Riparian zones are critical interfaces to freshwater systems, acting as gateways for the conveyance and modification of macronutrient fluxes from land to rivers and oceans. In this paper, we propose that certain riparian conditions and processes (conceptually ‘Riparian Reactive Interfaces’) may be susceptible to environmental change with consequences of accelerating local nutrient cycling cascading to global impacts on the cycles of carbon (C), nitrogen (N), and phosphorus (P). However, we argue that this concept is insufficiently understood and that research has not yet established robust baseline data to predict and measure change at the key riparian ecosystem interface. We suggest one contributing factor as lack of interdisciplinary study of abiotic and biotic processes linking C, N, and P dynamics and another being emphasis on riparian ecology and restoration that limits frameworks for handling and scaling topography–soil–water–climate physical and biogeochemical observations from plot to large catchment scales. Scientific effort is required now to evaluate riparian current and future controls on global nutrient cycles through multi-nutrient (and controlling element) studies, grounded in landscape frameworks for dynamic riparian behaviour variation, facilitating scaling to catchment predictions.</jats:p

    Elevated <scp>CO<sub>2</sub></scp> interacts with nutrient inputs to restructure plant communities in phosphorus‐limited grasslands

    Get PDF
    AbstractGlobally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2) and N and P additions on grassland biodiversity, community and functional composition in P‐limited grasslands. We exposed soil‐turf monoliths from limestone and acidic grasslands that have received &gt;25 years of N additions (3.5 and 14 g m−2 year−1) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m−2 year−1) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2, N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2–nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co‐occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P‐acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P‐limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P‐acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.</jats:p

    Reversed-phase high-performance liquid chromatography–fluorescence detection for the analysis of glutathione and its precursor γ-glutamyl cysteine in wines and model wines supplemented with oenological inactive dry yeast preparations

    Get PDF
    El pdf del artículo es la versión pre-print.A reversed-phase high-performance liquid chromatography-fluorescence detection methodology involving a pre-column derivatization procedure using 2,3-naphtalenedialdehyde in the presence of 5 and 0. 5 mM of dithiothreitol to determine total and reduced glutathione (GSH) and γ-glutamyl-cysteine (γ-glu-cys) in musts and wines has been set up and validated. The proposed method showed good linearity (R 2 >99% for reduced and total GSH, and R 2 >98% for γ-glu-cys) in synthetic wines, over a wide range of concentration (0-10 mg L -1). The limits of detection for reduced GSH in synthetic and real wines were almost the same (0. 13 and 0. 15 mg L -1, respectively) and slightly higher for γ-glu-cys (0. 24 mg L -1). The application of the method allowed knowing, for the first time, the amount of total and reduced GSH and γ-glu-cys released into synthetic wines by oenological preparations of commercial inactive dry yeast (IDY). In addition, the evolution of these three compounds during the winemaking and shelf life (0-9 months) of an industrially manufactured rosé wine supplemented with a GSH-enriched IDY showed that although GSH is effectively released from IDY, it is rapidly oxidized during alcoholic fermentation, contributing to the higher total GSH content determined in wines supplemented with GSH-enriched IDYs compared to control wines. © 2011 Springer Science+Business Media, LLC.IAO and JJRB acknowledge CAM and CSIC for their respective research grants. This work has been founded by PET2007-0134 project.Peer Reviewe

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse
    corecore