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Abstract
The combined indirect and direct impacts of land use change and climate change on river water quality

were assessed. A land use allocation model was used to evaluate the response of the catchment land

use to long-term climatic changes. Its results were used to drive a water quality model and assess the

impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections

were employed to estimate the likelihood of such response. The River Thames catchment (UK) was

used as a case-study. If land use is considered as static parameter, according to the model results,

climate change alone should reduce the average nitrate concentration, although just by a small amount,

by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural

soils) and increased instream denitrification, and should increase the average phosphorus

concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution

capacity of the river flow. However, the results of this study also show that these long-term climatic

alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved

grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-

evolution of land use with climate, the average nitrate concentration is expected to be decreased by

around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the

average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower

Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower

Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the

lower Thames.
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1 Introduction
Human action has considerably modified the Earth’s environments and landscape, and continues to do

so. Between one-third and one-half of the Earth’s land has been transformed by human interventions

(Vitousek et al., 1997). Human-induced land use/land cover changes alter processes such as runoff

generation, nutrient cycles and soil erosion to a similar or greater extent than other major drivers, such

as climate change (Sterling et al., 2013). In recent centuries, land use change has had much greater

effects on ecological processes than climate change (Dale, 1997).
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Although land use is widely acknowledged as a key driver of change in catchment processes and

properties, it is challenging to predict how it will change in the future subject to stressors such as climate

change, technology change and human population increases. Its future evolution is uncertain (Mehdi

et al., 2015), as land use and land management are changed to adjust to changes in climate, policy,

food demand etc. Natural vegetation also responds dynamically to climatic variations (Ruiz-Pérez et al.,

2016). These adaptations can have hydrological and ecological effects (Dale, 1997).

One example of widespread human-induced land use change is agriculture. Modern agriculture is

recognised as one of the most significant non-point sources of water pollution (Johnes, 1996), especially

for nutrients like nitrogen and phosphorus (Tong and Chen, 2002). At the global scale, agriculture is the

economic sector that is likely to suffer the greatest financial impact as a result of climate change (Lobell

et al., 2011). Farmers are expected to adapt to climate change by switching activities to those that are

most profitable, given the new conditions they will face (Fezzi et al., 2015). This adaptation is likely to

have a strong effect on river water quality (Fezzi et al., 2015), for example by increasing/decreasing

nitrogen leaching to the aquifer, or by altering the nutrient export from agricultural soils.

Scenarios are commonly used as tools to examine plausible developments of change (Mehdi et al.,

2015). Nevertheless, scenarios are usually characterised by a high degree of subjectivity and do not

describe the response of the land use to climatic changes. An alternative to understand the response

of land use to drivers such as climate variability is through the use of spatially-explicit land use allocation

models. These models estimate the future evolution of land use/land cover through land use conversion,

based on climate, population and peoples’ responses to economic opportunities, as mediated by

institutional factors (Lambin, 1997; Lambin et al., 2001).

Despite the importance of climatic and socio-economic changes on water resources and water quality

management, there is still a strong need for quantitative approaches that can evaluate the impact of

these drivers of change and assist catchment and river management, compensating for the lack of

objectivity that socioeconomic and emission scenarios holds. Moreover, only a few studies so far have

presented integrated assessments of the joint impact of climate and land use change on water quality.

Other studies evaluated the impacts of climate change and/or land use change in the Thames

catchment or in other catchments in the UK, although none assessed the impact of the dynamic co-

evolution of land use with long-term climatic changes, to the authors’ knowledge. The findings of this

study in terms of phosphorus substantially agree with the ones of Crossman et al. (2013) concentration,

who used the same model (INCA – INtegrated CAtchment model) but a different methodology, with a

set of static land use scenarios. Bussi et al. (2016b) also provided estimates of the impacts of climate

and land use change on total phosphorus concentration using the INCA model and a scenario-neutral

methodology (i.e. a methodology that does not use emission scenarios or socio-economic scenarios to

drive a hydrological model, but rather makes a sensitivity analysis on the model input), but employing

a set of static land use change scenarios that were not linked to agricultural supply and demand.

The objectives of this study are:

- To develop a methodology for the combined evaluation of direct and indirect impacts of climate

change on river water quality, taking into account the response of land use and agriculture to

changes in climate.

- To understand the relative importance of the direct and indirect impacts of climate change on

nitrate and phosphorus concentration in the River Thames

A land use allocation model, embedded within an integrated modelling platform, is coupled to a

hydrological and water quality model to assess the impact of a changing climate on water quality taking

into account the land use/land cover response to changing crop suitability and profitability under the

same climatic variations. This is done by means of a scenario-neutral methodology (Bussi et al., 2016a,

2016b; Prudhomme et al., 2010), which allows the system response to changes in climate to be

assessed without having to rely on specific climate and/or land use scenarios. The water quality model



used is the INCA model for nitrogen and phosphorus (Wade et al., 2002a, 2002b, Whitehead et al.,

1998a, 1998b). This model is applied to the River Thames catchment (UK).

2 Study area
This paper focuses on River Thames catchment upstream of London (Figure 1, 9,927 km2), located in

southern England and draining toward the city of London. This river provides freshwater supply to

fourteen million people (Whitehead et al., 2013), most of whom live downstream within London, and

receives treated wastewater from approximately three million people (Kinniburgh and Barnett, 2009).

The climate is temperate with Atlantic and continental influences. The average annual precipitation is

730 mm (1960-2014, with a minimum of 538 mm in 1973 and a maximum of 974 mm in 2000) and the

annual average temperature is 10.7°C (1960-2014, minimum: 8.6°C in 1963, maximum 12.1°C in 2014),

with a difference of around 1.5-2°C between the interfluve and the valleys. The average summer

temperature is 16.5 °C and the average winter temperature is 4.7°C. The average daily flow is 67 m3 s-

1 at the catchment outlet in London, with a daily Q5 (discharge exceeded only 5% of the time) of 206

m3 s-1. High flows usually occur in winter to early spring and low flows in summer to late autumn (Bussi

et al., 2016a).

The catchment geology is dominated by chalk, with limestone in the headwaters, and clay/mudstone

and sandstone also present both upstream and downstream of the chalk area (Bloomfield et al., 2011).

The catchment is dominated by arable land alternated with grassland in its upper part (around 80% of

the catchment draining to reach 4 in Figure 1 is dedicated to arable agriculture or improved grassland),

with little urban land in the headwaters. The urban land portion increases in the Western part of the

catchment (up to 30% of the lowermost sub-catchments in Figure 1). Around 13% of the catchment is

covered by woodland.

Figure 1 – Location of the River Thames catchment (UK). The INCA model sub-catchments are also shown. The grey
areas show the location of the urban areas.

The results of this study are shown at two reaches: reach 4, representative of the upper Thames, and

reach 19, representative of the lower Thames. Reach 4 drains sub-catchments 1 to 4, which have an

extension of 1610 km2. The land use is predominantly agricultural, with 50% of arable land and 28% of

improved grassland. Forest land is 6% of the total area. Only 5% of the catchment is occupied by urban

land, with less than 300,000 population equivalent discharging effluents into the river. Reach 19 drains

sub-catchments 1 to 19. The part of the Thames catchment drained by reach 5 to 19 has an extension

of 6540 km2. The land use is also dominated by agriculture, with a portion of arable land of 42% and



28% of improved grassland. Forest land is 11% and urban land is also 11%. The population equivalent

of this portion of catchment is slightly less than 3,000,000.The stream flow data were obtained from the

National River Flow Archive (NRFA). These data are freely available to download from the NRFA

website. In particular, gauged daily flow data were used, i.e., mean river flow in cubic metres per second

in a water-day, (09.00 to 09.00 GMT). The period of record is variable, depending on the station. For

example, for the Thames at Teddington (South-East London), data are available since the late 19th

century. An overview of river flow measurement techniques and hydrometric practice is provided on the

website of the NRFA. Flows are typically calculated the basis of measurements at 15-minute intervals.

These high resolution data are used to calculate the mean gauged daily flow.

Daily rainfall and temperature data were gathered from the Met Office Integrated Data Archive System

(MIDAS), which is freely available for on-line access to UK academics. These data were collected

through a network of meteorological stations spread all over the Thames catchment (and the rest of the

country). Detailed information on the collection methods and quality control is reported on the Centre

for Environmental Data Analysis (CEDA) website. Most measurements are made with full traceability to

national or international standards. The daily precipitation, minimum temperature and maximum

temperature data from all the available stations within the Thames catchment were interpolated on a 5

× 5 km grid using the Thiessen polygon method, and then the daily average precipitation and

temperature series were computed and used as model input.

All water quality data (nitrate, phosphorus and suspended solid concentration in the river) were obtained

from the Water quality data archive (WIMS), collected by the Environment Agency. Samples were taken

from sampling points round the country, including: agricultural, coastal, estuary, rivers, lakes, ponds,

canals, sewage discharges, trade discharges, pollution investigation points and waste sites. The

archive provides data on these measurements and samples dating from 2000 to November 2016.

Samples were taken with a frequency of around four weeks. Furthermore, in order to complement this

dataset and cross validate the model with data collected by a different agency, the Centre for Ecology

and Hydrology (CEH) Thames Initiative (TI dataset was employed, spanning from 2009 to 2014. More

information is provided on Bowes et al. (2012), Bussi et al. (2014) and Whitehead et al. (2015). It must

be pointed out that other authors have already acknowledged the limitations of such a coarse sampling

scheme (Letcher et al., 1999; Walling and Webb, 1981), especially when employed in the calibration of

models. These studies have shown that monthly water quality sampling regime can lead to

underestimated pollutant loading by more than 50%. To overcome this limitation, the results of this

study are expressed in relative terms (e.g., in terms of % change) rather than in absolute terms, so that

the bias introduced by the use of these observations is eliminated or, at least, reduced.

3 Methodology

3.1 Land use allocation model
Land use allocation was simulated using the IMPRESSIONS Integrated Assessment Platform (IAP),

which is an update of the CLIMSAVE IAP (Harrison et al., 2016, 2015, 2014; Holman et al., 2016). The

platform integrates a suite of models to assess the impacts of, and adaptation to, climate and socio-

economic change across a range of sectors including urban development, coastal and fluvial flooding,

agriculture, forests, water resources and biodiversity (see Figure 2). The computationally efficient

models within the IAP (details of which can be found in Holman and Harrison, 2011) have been validated

and subject to extensive sensitivity (Kebede et al., 2015) and uncertainty (Brown et al., 2014; Dunford

et al., 2014) analyses. The platform is run across the European Union countries plus Norway and

Switzerland on a 10’x10’ grid (approximately 16km x 16km) of over 23,000 gridcells (with each grid cell

containing multiple soil types), and over 4 time slices (baseline, 2011-2040, 2041-2070 and 2071-2100).



Figure 2 –Schematic showing the structure of the linked models within the IMPRESSIONS IAP2.

The rural land use allocation metamodel in the IAP (Audsley et al., 2014) is based on the Silsoe Whole

Farm Model (SFARMOD-LP - Annetts and Audsley, 2002) a constrained optimising linear programming

model of long-term land use. The model spatially allocates land uses (intensive arable, intensive

grassland, extensive grassland, managed forest, unmanaged forest and unmanaged land), and

associated rainfed and irrigated crops and tree species, based on relative economic profitability and

subject to a range of constraints. These include areas subject to urban development, flood risk,

environmentally protected areas (such as Natura 2000 sites) and water resource availability. The model

works iteratively to find a spatial land use allocation solution that meets demand for the commodities of

timber, meat, milk, fibre, protein, roots, oils and cereals across Europe, in response to spatial simulated

changes in profitability driven by changing crop yields, fodder production (influencing milk and meat

production) and timber yield. Price factors are used to stimulate or reduce production of a given

commodity across Europe to meet demand (by making its production more/less economically

advantageous). In the context of the current study, land use in the Thames catchment can change as

a result of intra- and inter-catchment changes in crop and timber yields and profitability, reflecting the

large-scale markets of such commodities where prices and supply are driven by national and

international demand. For this study, the baseline socio-economic conditions within the IAP were

maintained, so that European food demand (driven by population, GDP and dietary preferences and

net imports) and agricultural technology (crop breeding, mechanisation, etc.) remained constant. The

simulated baseline land use for the River Thames catchment (i.e., the current land use) is shown in

Figure 3.



Figure 3 – Simulated percentage land use of the River Thames catchment per sub-catchment under current climate
(i.e., no alterations of precipitation and temperature).

3.2 Water quality model
The INCA hydrological and water quality model was employed to reproduce the water quality dynamics

of the River Thames (UK). This model was chosen because it combines the simplicity required to

reproduce water quality processes at the catchment scale with the accuracy that is necessary to

produce estimates of flow and nutrient concentration. Furthermore, it is a very well-known water quality

model, used in several catchments in the UK and in the rest of the world since the late 90s, with an

extensive body of publications to support it (some of which are detailed below). The INCA model is

particularly suitable for the scale of this study, as it was developed as a catchment-scale model, with

the possibility of disaggregating the catchment in several sub-catchments. Furthermore it offers the

possibility of analysing the effect of land use change on water quality, given that different land use units

with different characteristics and parameters can be defined within each sub-catchment.

The INCA model was initially developed as a nitrogen (Whitehead et al., 1998a) and phosphorus (Wade

et al., 2002b) model, although several other sub-models were added later, such as a soil erosion and

sediment transport sub-model (Lázár et al., 2010), a faecal indicator model (Whitehead et al., 2016)

and an organic contaminant model (Lu et al., 2016). The hydrological and water quality sub-models of

INCA have been applied to several basins across the UK and Europe, and, in particular, to the River

Thames catchment (Bussi et al., 2016b; Crossman et al., 2013b; Jin et al., 2012; Lu et al., 2016;

Whitehead et al., 2016, 2013). INCA is a semi-distributed process-based model which simulates the

transformation of rainfall into runoff and the propagation of water through a river network (Wade et al.,

2002a). Its inputs are daily time series of precipitation, temperature, hydrologically effective rainfall, and

soil moisture deficit. The latter two are estimated using another semi-distributed hydrological model,

called Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport model - PERSiST

(Futter et al., 2014), which is specifically designed to provide input series for the INCA family of models.

It is based on a user-specified number of linear reservoirs which can be used to represent different

hydrological processes, such as snow melt, direct runoff generation, soil storage, aquifer storage and

stream network movement. The description of its application to the river Thames can be found in Futter

et al. (2014).

The nitrogen sub-model of INCA (Wade et al., 2002a; Whitehead et al., 1998a, 1998b) reproduces the

cycle of nitrogen from its main sources (atmospheric deposition, fertilisers, wastewater, etc.) to the river.

The most important soil processes are included, such as denitrification, nitrification, immobilisation,

mineralisation and leaching towards the aquifer. Nitrification and denitrification processes in the streams

are also taken into account. The phosphorus sub-model of INCA (Wade et al., 2002b) incorporates the

main sources of phosphorus, both diffuse (fertilisers) and point (wastewater), as well as the main

processes involving phosphorus, such as sorption/desorption. The phosphorus sub-model of the INCA

model also includes a sediment sub-model, which computes the detachment of soil particles from the

hillslopes and their transport towards the catchment outlet. The INCA model has already been applied

to the River Thames catchment (Crossman et al., 2013b; Jin et al., 2012; Lu et al., 2016; Whitehead et

al., 2016, 2013). In this study, the same model structure is used, where the catchment is divided into

22 sub-catchments and the river into 22 corresponding reaches (Figure 1). The land uses of the Thames



catchment were categorised as follows: forest (including both managed and unmanaged forest),

unfertilised grassland (i.e., extensive grassland), fertilised grassland (i.e., intensive grassland), arable

(i.e., intensively farmed land) and urban. The land use configuration used for model calibration was

obtained from the IAP model rather than from land use maps to ensure consistency between the

baseline and the scenario results.

Based on a prior general sensitivity analysis of the INCA model of the River Thames (Spear and

Hornberger, 1980; Whitehead et al., 2015) and the modeller’s knowledge, the following 22 parameters

were identified as the most influential:

- Hydrology (Bussi et al., 2016a; Jackson-Blake and Starrfelt, 2015): rainfall excess proportion

(the proportion of excess rain that is converted into direct runoff), soil water and ground water

residence times (i.e., flow velocity for sub-superficial flow and base flow), maximum infiltration

rate, flow-velocity coefficient (the coefficient of a power law used to calculate channel flow

velocity from discharge), flow threshold for saturation excess direct runoff. (,

- Nitrogen (Jin et al., 2012; Wade et al., 2002a): soil denitrification coefficient, nitrification,

mineralisation and immobilisation rates in the soil, nitrogen uptake rate by crops, groundwater

nitrate concentration, instream nitrification rate and instream denitrification rate,

- Sediment,( Bussi et al., 2016a; Lázár et al., 2010):,splash and flow erosion parameters (defining

the erodibility fo soils), flow erosion direct runoff threshold (defining the threshold above which

flow erosion occurs), transport capacity scaling factor (which adjusts the transport capacity on

the hillslopes), transport capacity non-linear coefficient (which adjusts the transport capacity on

the hillslopes), instream sediment transport parameters (which adjust the transport capacity in

the channel)

- Phosphorus (Bussi et al., 2016a; Jackson-Blake and Starrfelt, 2015): soil matrix sorption

coefficient (which adjusts the sorption capacity of the soils),water column sorption coefficient

(which adjusts the sorption capacity of the water column), stream bed sorption coefficient

(which adjusts the sorption capacity of the be sediment).

More information on INCA model sensitivity analysis and Monte Carlo calibration can be found in

Jackson-Blake and Starrfelt (2015) and Bussi et al. (2016a).

The feasible ranges of variation of these influential model parameters, informed by previous studies,

were sampled randomly, and 10,000 different parameter sets were generated. Subsequently, the INCA

model was run with each of these parameter sets, and its performance was assessed based on

observed values of flow and water quality at two stations (reach 4 and reach 19), using data from 2010

to 2014. The metric used for model assessment was the Nash and Sutcliffe Efficiency (NSE - Nash and

Sutcliffe, 1970) for the flow and the percent bias (PBIAS - Bennett et al., 2013) for nitrate and sediment

on the daily results. The best model was selected and used in the rest of the study. The results are

shown in Figure 4, where the grey-shaded area represents the calibration period (2010-2014), which

was chosen to ensure that the model reflects current, rather than historical, catchment conditions, in

particular, wastewater treatment standards, fertiliser and manure use and stocking densities. The

performance indices for calibration and validation are shown in Table 1.



Figure 4 – INCA model calibration and validation results at two locations on the River Thames. Observed data: NRFA
(National River Flow Archive, daily flow, 2000-2015), TI (Thames Initiative dataset, weekly nitrate and total phosphorus,
2009-2014) and WIMS (Water Information Management System database, monthly nitrate and total phosphorus, 2000-

2015). The grey-shaded area represents the calibration time period.

Reach Flow NSE Flow PBIAS Nitrate R2 Nitrate

PBIAS

Phosphorus

R2

Phosphorus

PBIAS

Calibration

2010-2014

Reach 4 0.81 3 0.49 -1 0.30 12

Reach 19 0.85 7 0.49 0 0.18 31

Validation

2000-2010

Reach 4 0.73 1 0.56 -4 0.28 22

Reach 19 0.79 11 0.56 2 0.42 53

Table 1 – Performance indices of the INCA model (calibration and validation). NSE: Nash and Sutcliffe Index, R2:
correlation coefficient, PBIAS: percent bias.

As Figure 4, the model results can be considered generally satisfactory in terms of reproduction of the

system response to climatic variations, given the uncertainty that characterises both model results and

measured data values. It is important to note that this model is not used to provide daily forecasts of

nitrate and phosphorus concentrations in the River Thames, but rather to disentangle the average

catchment response to long-term changes in the climatic conditions and its consequent modifications

of the land use.

Concerning the phosphorus simulation reach 19, the PBIAS is low compared to the thresholds that are

usually employed in hydrological modelling (Moriasi et al., 2007), especially for validation, although the

R2 (correlation coefficient) shows relatively high values (0.42 for validation). The interpretation of this is

likely to be the impact of phosphorus effluent concentrations on the river concentration. At this location

in the river, a large amount of wastewater effluent is discharged into the river and impacts greatly the

phosphorus concentration. In this study, we used a constant phosphorus concentration for the effluent

as input to the water quality model, due to the lack of better data. However, this concentration is likely

to vary in time, and it was probably higher in the early years of the 2000s and lower in the present, due

to the improvements in phosphorus stripping techniques (as the decreasing trend in the observed

concentration seems to show). Using an average concentration as model input can therefore introduce

an important bias. Although this is likely to affect the results of this study, the phosphorus model results

for reach 19 are shown anyway, since the methodology employed in this paper is still valid.



3.3 Scenario-neutral methodology for climate variability impact assessment
A scenario-neutral approach was used to assess the impact of long-term climate change and climate

variability on land use and water quality. As opposed to top-down approaches, which use climate model

outputs to drive hydrological and environmental models, the scenario-neutral methodology is based on

a bottom-up approach. Environmental vulnerability indicators (in this case, river water quality) are used

as end-variable, and a response surface of these indicators to changes in some climatic features is built

using environmental models (Singh et al., 2014). The likelihood of these climatic changes is then

assessed by integrating information about future climate (often from climate models) into the results of

this methodology (Prudhomme et al., 2010). The main advantages of this methodology is that a specific

emission scenario or a specific climate model do not need to be selected from the available tools (which

is often a difficult and slightly arbitrary task) and it does not need a bias-correction procedure (which

can also be complex to perform in certain cases).

In this study, the following methodology was set up. First, the climatic stressors most likely to impact

water quality were identified. Alterations in these climatic stressors were then applied to the current

climatic observed series of daily precipitation and temperature from 1960 to 2015. This allowed the

creation of a number of combinations of perturbed input time series (precipitation and temperature)

which were used to drive both the land use model and the water quality model (Figure 5). The final

result was a set of nitrate and phosphorus concentration time series resulting from all the combinations

of the altered climatic time series. The advantages of using this methodology are that no climate model

output is required to drive the land use and water quality models, and therefore no assumptions have

to be made on future greenhouse gas emission/concentration scenarios, and no bias correction of a

climate model output is required (Prudhomme et al., 2010). Furthermore, in this particular case, this

methodology seems even more appropriate because this study focuses on long term changes, without

necessarily having to relate the resulting changes in land use and water quality with a future time horizon

or a prescribed time by which the scenario is thought to occur.



Figure 5 – Scheme of the methodology used in this study.

Alterations to average precipitation and average temperature were introduced by means of a uniform

“delta change” transformation (Hay et al., 2000) applied to observed daily precipitation and temperature

values. The alterations were chosen to cover the projected changes in annual precipitation and

temperature by climate models, but also to stress the system further, with the aim of assessing not only

future plausible changes but also the response of the system under very extreme conditions. Following

Christensen et al. (2007), for Northern Europe the annual temperature is expected to increase up to

5.3°C by 2080-2099, while annual precipitation is expected to vary between 0 and +16% (although a

decrease in summer precipitation is also forecasted, up to 21%). Therefore, seven alterations were

applied to the temperature (from +0°C to +6°C with a 1°C step) and eight alterations to the precipitation

time series (from -30% to +40% with a 10% step), creating in total 56 combinations of manually-altered

climate. For each time series, the IAP was first run to compute the corresponding land use for the

Thames catchment given the long-term climatic changes dictated by the scenario-neutral climatic

alterations. Then, the water quality model was run, driven by the altered precipitation and temperature

time series and using the land use map obtained at the previous step. An additional model run was also

carried out for each of the 56 climate alteration combinations, using altered climate but unaltered land

use (i.e., the current land use), in order to isolate the effect of considering land use as a dynamic

variable. The results of the water quality model were analysed in terms of average nitrate concentration

and average total phosphorus concentration (the averages were computed over all the time period

considered, i.e. 1960-2015), at two locations on the River Thames (reach 4: Thames at Farmoor – i.e.,

upper Thames, and reach 19: Thames at Runnymede – i.e., lower Thames).

Although, as said above, this methodology does not require the use of climate model results as inputs

to the modelling, these are used to compute the likelihood of the catchment response to climatic

alterations by assigning a probability of occurrence to the combinations of climate alterations considered

in this study. The probabilistic change factors from the UK climate projections 09 (UKCP09, Murphy et

al., 2009) were used to determine the likelihood of the precipitation and temperature changes used to

drive the land use and water quality models. The UKCP09 scenarios were developed by the UK Met

Office to provide climate change projections over the UK accounting for uncertainties in global climate

models. These projections are based on the results of the HadCM3 coupled ocean-atmosphere Global

Circulation model (Gordon et al., 2000), which was run as a perturbed physics ensemble to sample

model and parameter uncertainties (Murphy et al., 2007). HadCM3 projections were downscaled on a

25 km grid over seven overlapping 30-yr time periods based on an ensemble of 11 variants of the

regional climate model HadRM3, and a statistical procedure was applied to build local-scale

distributions of changes for various climate variables. UKCP09 gives projections for each of three of the

IPCC’s Special Report on Emissions Scenarios (SRES) scenarios (A1FI - called “high” in UKCP09, A1B

– “medium” and B1 – “low”). Among the available outputs, expected changes in average precipitation

and temperature following the different emission scenarios are given (change factors). The change

factors were used to assess the likelihood of the water quality alterations that follows the climatic

alterations detailed above. No daily or monthly time series were employed, and no downscaling/bias

correction is required within the framework of a scenario-neutral methodology. The likelihood of

changes in water quality was computed by comparison with climatic properties taken from a set of

10,000 change factors for the River Thames catchment under the A1FI emission scenario (the most

severe scenario) for several future time slices (from the 2020s to the 2080s). These change factors

were downloaded from the UK climate projections website of the Met Office.



4 Results

4.1 Impacts of climate variability on land use
As the IAP model simulates a decrease in arable area across the Thames catchment and the UK with

increasing temperature (Figure 6), it simulates a corresponding significant increase in arable area in

parts of Central and Eastern Europe. Higher crop yields due to increased temperatures result in greater

relative profitability of arable land in these regions. Therefore growing arable crops within the UK no

longer maximises profit so that such land is converted to fertilised (intensive) grassland. However, the

model indicates that a large increase in temperature of +6°C would cause a return of arable agriculture

in the Thames catchment (although not at the current level). Figure 6C illustrates an expansion of the

arable area under such conditions in Europe as increased drought and heat stresses reduce crop yields

and productivity across much of Europe. As a result, demand for arable commodities is not met and

increased profitability of arable land within the UK prompts conversion of grassland to arable land.

Figure 6 –Percentage arable area per grid cell simulated by the IAP2 model for A: Baseline (current) climate, B: +3°C,
and C: +6°C and -30% precipitation.

Figure 7 and Figure 8 show the simulated arable, fertilised grassland, non-fertilised grassland and forest

areas of the River Thames catchment across the range of precipitation and temperature changes,

expressed as a percentage of the undeveloped catchment area. Figure 7 shows the response of the

land use to change in climate for the upper Thames, i.e., the sub-catchment drained by reach 4 (Thames

at Farmoor). Figure 8 shows the response of the lower Thames catchment (i.e., the part of the Thames

catchment drained by the River Thames between reach 4 and reach 19 – Thames at Runnymede). The

baseline land use fractions are shown in Figure 3. The results show that the simulated agricultural land

use in the Thames catchment is highly sensitive to small changes in climate in Europe. In particular,

both the arable land and the fertilised grassland fractions of the Thames catchment appear to be

especially sensitive to increases in temperature and to increases in precipitation under conditions of

low temperature increases.



Figure 7 – Response of the land use in the upper Thames catchment to long-term changes in the climate (sub-
catchment drained by reach 4 – Thames at Farmoor), in terms of land use fraction of the catchment. Black lines are

surface contour lines (bold lines every 10% land use fraction, thin lines every 2.5%).

Figure 8 – Response of the land use in the lower Thames catchment to long-term changes in the climate (sub-
catchments drained by the River Thames from reach 4 to reach 19 – Thames at Runnymead), in terms of land use
fraction of the catchment. Black lines are surface contour lines (bold lines every 10% land use fraction, thin lines

every 2.5%).

Even a small increase in temperature causes a sharp decrease in arable land, and corresponding

increase of fertilised grassland. As temperature increases above ~2°C, the arable area decreases to

~0% in most of the catchments under all precipitation scenarios. This does not reflect the inability of

such arable crops to grow under these conditions, but rather that it is more profitable to meet demand

in other parts of Europe.

4.2 Impacts of climate variability on water quality
The INCA model results provided an assessment of the response of the River Thames water quality to

changes in annual precipitation and temperature. In Figure 9 and Figure 10 the response surfaces are

shown for the two different river reaches (Figure 9: reach 4 – Thames at Farmoor, Figure 10: reach 19

– Thames at Runnymede), and for the two water quality variables analysed in this paper (nitrate

concentration: left part of the plots, total phosphorus concentration: right part of the plots). Two water

quality response surfaces are shown for each variable: the response under fixed (baseline) land use

representing the direct impact of climate change on hydrological functioning, nutrient transport and in-

river processes; and the response under variable land use that also includes the indirect changes

associated with long-term autonomous land use change and associated changed agricultural nutrient

inputs.

Nitrate in the Thames catchment is mainly due to diffuse sources (fertilisers used in agriculture, Jin et

al., 2012), hence its concentration in the river is proportional to runoff. An increase in temperature

increases evapotranspiration and, as a consequence, causes a decrease in runoff (Figure 9 and Figure

10). In the same way, a decrease in precipitation entails a decrease in runoff and thus a decrease in

nitrate concentration. Furthermore, a decrease stream flow means reduced velocity, increased

residence times and hence enhance the denitrification processes, reducing nitrate concentration (Jin et

al., 2012). On the contrary, the main sources of phosphorus in the Thames are household effluents

discharged by sewage treatment plants (Crossman et al., 2013b; Whitehead et al., 2013), and therefore

phosphorus concentration is inversely proportional to flow (i.e., less flow means less dilution capacity

and higher phosphorus concentration). This means that an increase in temperature causes an increase

in phosphorus concentration, while an increase in precipitation causes a decrease in phosphorus

concentration (Figure 9 and Figure 10).



Figure 9 – Response to climate variability on the water quality of the River Thames at Farmoor – reach 4. The black
dots represent the space defined by the UKCP09 change factors for the 2040s. The black lines are surface contour

lines (every 0.5 mg l-1 for nitrate, every 0.04 mg l-1 for phosphorus).

Figure 10 – Response to climate variability on the water quality of the River Thames at Runnymede – reach 19. The
black dots represent the space defined by the UKCP09 change factors for the 2040s. The black lines are surface

contour lines (every 0.5 mg l-1 for nitrate, every 0.04 mg l-1 for phosphorus).

The change in nitrate concentration is inversely proportional to temperature and directly proportional to

precipitation, with a similar pattern of control exerted by both drivers of change (changes in precipitation

and temperature), at least within the range of variations considered in this study. On the other hand,

phosphorus has a different behaviour, with marked increases due to a decrease in precipitation, and

also a direct proportionality with temperature, although weaker than with precipitation. This is more

evident at reach 19 (lower Thames), while for reach 4 (upper Thames) the pattern is not as clear, and

the response surface gradient is not homogeneous.

From Figure 9 and Figure 10 it can also be observed that some important differences in water quality

behaviour arise by allowing the land use to autonomously adjust to the climate rather than remaining

static. The variable land use appears to enhance the proportionality between increase in temperature

and decrease in nitrogen concentration. In terms of phosphorus concentration, considering variable

land use introduces a very significant change in the catchment response, where it appears to offset the

effect of decreasing precipitation in increasing phosphorus concentration. This effect appears more

evident in the rural reach 4, where the relative contribution of diffuse sources of phosphorus is higher

than at reach 19, and thus the catchment is more sensitive to changes in land use.

Figure 9 and Figure 10 also allow analysing the spatial patterns of the catchment response. In terms of

nitrate concentration, the model results suggest that the upper Thames is more sensitive to changes in

climate than the lower Thames, while for phosphorus concentration the opposite effect is observed.



Additionally, the sensitivity of the response to the drivers of change considered in this study is different

depending on the sub-catchment. For example, in the lower Thames nitrate concentration seems to be

less sensitive to changes in precipitation than in the upper Thames, as the gradient of the response

surfaces shows.

4.3 Likelihood of water quality changes
The response surfaces shown in Figure 9 and Figure 10 provide an assessment of the system sensitivity

to some drivers of change, but do not offer any information on the likelihood of the simulated changes

in water quality happening in the future. Nevertheless, climatic model outputs can provide a value of

likelihood of the drivers of change considered. In Figure 9 and Figure 10, a white-shaded area is shown

on each of the response surfaces, indicating the area defined by 10,000 combinations of UKCP09

precipitation and temperature change factors for the 2040s, under the A1FI emission scenario.

Computing the catchment response in terms of water quality corresponding to each of these 10,000

pairs of annual precipitation/temperature changes allows a probability function of the expected changes

in the river water quality to be derived.

In Figure 11, the empirical probability distribution functions of expected average nitrate concentration

change and expected average total phosphorus concentration changes, corresponding to the 10,000

UKCP09 precipitation and temperature change factors, for both fixed and variable land use are given.

In all cases considering variable land use introduces considerable changes in the final outcome. For

reach 4, the median expected change in the total phosphorus concentration even shifts from positive

to negative, thus highlighting the effect of land use in mitigating climate change. This is reflected also

in Table 2, where the median expected changes and their standard deviations are shown, based on the

results depicted in Figure 11.

Figure 11 – Probability distribution function of expected changes in water quality (average concentration of nitrate and
total phosphorus), according to the UKCP09 change factors for the 2040s, for two reaches of the River Thames (reach

4 – Thames at Farmoor and by reach 19 – Thames at Runnymead).

Table 2 also shows the model results for 2060s and 2080s. The change of the system response

according to the UKCP09 for different time slices is also represented in Figure 12, for reach 19, and

considering variable land use. The decrease in nitrate concentration and increase in phosphorus

concentration increase in time, due to a stronger signal of warming, which reduces runoff and stream

flow.



Reach 4 Reach 19

Water quality

variable

Time

slice
Land use

Median

change

Standard

deviation

Median

change

Standard

deviation

Average nitrate

concentration

2040s Fixed land use -2.2 0.8 -1.4 0.5

2040s Variable land use -4.9 1.4 -4.8 1.0

2060s Fixed land use -3.3 1.2 -2.1 0.7

2060s Variable land use -7.0 2.1 -6.3 1.4

2080s Fixed land use -4.2 1.5 -2.8 0.9

2080s Variable land use -8.7 2.3 -7.6 1.5

Average total

phosphorus

concentration

2040s Fixed land use 6.9 5.9 11.8 8.2

2040s Variable land use -3.7 5.0 -1.4 7.3

2060s Fixed land use 10.4 7.6 16.7 9.5

2060s Variable land use -1.8 6.4 2.6 8.5

2080s Fixed land use 12.4 9.5 19.1 11.3

2080s Variable land use 0.0 8.4 4.7 10.2

Table 2 – Median values and standard deviations of the expected changes (%) in water quality according to the
UKCP09 projections for the 2040s, 2060s and 2080s.

Figure 12 – Probability distribution function of expected changes in water quality (% change in average concentration
of nitrate and total phosphorus), according to the UKCP09 change factors for the 2040s, 2060s and 2080s for reach 19

(Thames at Runnymead), with variable land use.

5 Discussion
The results of this study show that market-driven adaptation of land use to climate change and long-

term climate variability can lead to significant changes. An increase in precipitation across Europe

appears to lead to a large expansion of the total agriculture land represented by arable and fertilised

grassland within the Thames catchment, while a decrease in precipitation would not bring very

significant changes to the agricultural fraction of the Thames catchment. In contrast, the non-fertilised

grassland and forest fractions of the catchment are not subject to significant changes, unless both

precipitation and temperature increase sharply.

In the Thames catchment, this translates into an expansion of fertilised grassland at the expense of

arable land. This is in apparent contradictions with the findings of Olesen and Bindi (2002), who stated

that global warming is expected to lead to the expansion of suitable cropping areas in the North of

Europe, although the Thames catchment is situated in the warmest and driest area of the UK, with

Figure 3 showing expansion of arable areas in the Baltic states, Republic of Ireland, Scotland and

southern Scandinavia. However, the IMPRESSIONS IAP model used in this study simulates land use

based on a range of trade-offs between multiple sectors and considers production and demand across

Europe as a whole, assigning land use based on resulting profitability. The model results do not indicate

that the Thames catchment (or the UK) becomes unsuitable for crops under warming scenarios, but

that they become less profitable compared to their cultivation in other areas in Europe or compared to

other land use types in the catchment. In the Thames catchment the increase in arable land in other

areas of Europe in response to climate change alone appears to be the main driver of land use change,

leading to a reduction in the profitability of agricultural land within the catchment. However, studies

investigating the combined impacts of climate and socio-economic change (such as population, dietary



preferences, GDP, and the level of food imports) on European landuse allocation have shown major

divergence in land use allocation between socio-economic scenarios (Harrison et al., 2014) and a

significant decrease in certainty of land use change (Holman et al., 2017). A broader range of land use

change outcomes in the Thames catchment would therefore be likely under future socio-economic

scenarios associated with changed European agricultural productivity, food demand and trade

relationships.

Olesen and Bindi (2002) report potential implication of nutrient leaching due to the impact of global

warming on agriculture. Nutrient pollution is the result of the combination of diffuse and point sources

from a variety of land uses and interactions. For example, in the upper Thames fertilised grassland is

the main land use, while intensively cultivated land is secondary; in the lower Thames agriculture is

predominant, but with important proportions of forest land. The co-evolution of this mosaic of land uses

and their implications on water quality could not be evaluated without using mathematical models (Tong

and Chen, 2002). This study shows a methodology that couples a land use model with a water quality

model to assess dynamically the impact of climate change on the nutrient concentration of the River

Thames. It is clear from Figure 9 and Figure 10 that the co-evolution and adaptation of land use to

changes in climate is a key factor in nutrient export towards the river system, and must be taken into

account. Furthermore, the results of the present study suggest that the impact of climate change alone

will be to enhance phosphorus concentration during low flows, similarly to what was found by both

Crossman et al. (2013) and Bussi et al. (2016b).

In terms of nitrate concentration, Jin et al. (2012) also provided climate change impact estimates in the

River Thames catchment, using the INCA model in a top-down frame (i.e., coupling the water quality

model with climate model projections), reporting increased river nitrate concentration in winter and

decreases in summer, following wetter winters and drier summers. These findings also agree with the

results of the present study, which pointed to a similar response of the Thames catchment to increases

and decreases in precipitation. In another study, Ferrier et al. (1995) found that Climate change will

alter flow regimes, temperature and nitrogen mineralization patterns in the River Don (Scotland). They

found that increased mineralization of nitrogen in the soil will be triggered by climate change, but also

that nitrate concentrations will be reduced slightly by the increased temperatures and decreased

summer flows, both of which enhance denitrification processes.

Concerning land use impacts on nitrate concentration in the Thames, Howden et al. (2010) reported

that the main driver of historical observed change is land use, and that long-term changes in agricultural

land use are more important that recent changes in farming practice. They found that once a step-

change in land use intensification (principally a shift from low intensity grassland to highly intensive

arable agriculture) has occurred, nitrate concentrations remain intractably high despite large-scale and

sustained management intervention. These changes are irreversible unless a significant area of arable

land is converted to low intensity grassland or forest (Howden et al., 2010). In their paper, Howden et

al. (2010) also urged caution before implementing policies (usually market-driven) that encourage

massive land conversions as their impact on fresh and marine waters could persist for many decades.

Similarly, Whitehead et al. (2002), after reconstructing the past land use changes in the River Kennet

catchment (a tributary of the Thames), found that a sharp increase in agricultural land since the 1930s

caused a major shift in the short term dynamics of nitrate in the river with increased river and

groundwater concentrations caused by non-point source pollution from agriculture. In light of these

statements, the methodology described in the present study offers a robust tool to analyse the long-

term impact of large changes in arable land extension due to variations in crop productivity and demand,

rather than to short term changes in farming practices.

One of the main contributions of this study is the assessment of the co-evolution of the land use with

changes in climate. Figure 9 and Figure 10 show the differences in the response if the variation of land

use with climate is taken into account or not. In general, there is an inverse relationship between

temperature and nitrate concentration, because an increase in temperature causes increased



evapotranspiration and reduced runoff from agricultural soils, as well as increased instream

denitrification due to lower flows. If variable land use is introduced, this relationship is enhanced,

because with an increase in temperature the total arable area is reduced (Figure 9 and Figure 10), and

thus the sources of nitrate are further reduced. This is a synergistic impact of land use and warming on

nitrate concentration in rivers.

In terms of phosphorus, temperature has the opposite effects, i.e. it increases the phosphorus

concentration in the river, because it reduces the river flow which is used to dilute the effluent coming

from sewage treatment plants. If variable land use is introduced, the reduction of arable agriculture

caused by increased temperature causes a decrease of phosphorus inputs from agriculture (principally

due to erosion and sediment transport from seasonal bare soil surfaces), and partially compensates for

the increase in phosphorus due to lower flows. In this case, the land use adaptation to climate is

mitigating the negative effects of climate change on phosphorus concentration. This is especially

evident for reach 4 under the UKCP09 climate projections (Figure 11, bottom-left plot). In this sub-

catchment, the model results show that land use can reverse the impact of climate change.

Figure 6 shows that the results of this methodology strongly depend on the location. Different

catchments experience very different alterations in their land use under the same combinations of

precipitation and temperature change. Therefore, the results of this study cannot be extrapolated to

other catchments. Nevertheless, they can be informative of the interplays that can occur between land

use and climate and their effects on agriculture and water quality, such as for example the expansion

or reduction of arable land due to changes in climate in different regions of the world. Additionally, this

paper shows that for catchment like the Thames, where the human-affected land is predominant, socio-

economic drivers of change must be considered, and they need to be taken into account at a very large

(continental or world) scale.

A key limitation of this study is that it did not take into account policy responses to changes in nutrient

concentration, such as for example the implementation of buffer strips to retain the excess of nutrients

moving towards the river network. Buffer strips were taken into account in the INCA parameterisation,

through the in-channel module of the INCA model versions. Some example of its applications are

Crossman et al. (2013), Flynn et al. (2002) and Whitehead et al. (2010). However, the coarse resolution

of the land use model did not allow accounting for variations in the buffer strips to respond to changes

in the river nutrient concentrations. This is surely a very important point that must be addressed in future

investigations.

Although a comprehensive analysis of the model uncertainty was not among the aims of this paper, it

is important to analyse the sources of uncertainty that affects the results of this study. In particular, the

modelling chain employed in this study (a “cascade” of two models: IAP and INCA) propagates errors

from the inputs down to the outputs. The uncertainty of the INCA model was assessed separately in

different studies, such as for example Raat et al. (2004), who pointed out the problem of equifinality and

suggested a multi-objective calibration approach, as well as the use of frequent measurements

(fortnightly frequency) as reference values for calibration. Dean et al. (2009) applied a generalised

likelihood uncertainty estimation (GLUE) framework to the INCA-P model, and concluded that the

uncertainty due to the model structure and parameterisation was similar to the uncertainty of the

measured values of total phosphorus in the river. Rankinen et al. (2006) also applied a GLUE approach

to evaluate the uncertainty of the INCA-N model results, integrating “soft data”, or experimental

knowledge of the processes, into the calibration procedure. Bussi et al. (2016) also showed a sensitivity

analysis of the sediment version of INCA (included in INCA-P), providing an estimation of the parametric

uncertainty of the model results. The parametric uncertainty of the whole combination of these two

models was not quantified in this study, although it can be assessed qualitatively.

This modelling combination involves around 25-30 influential parameters, based on previous

uncertainty assessments (Bussi et al., 2016a; Dean et al., 2009; Futter et al., 2014; Jackson-Blake and

Starrfelt, 2015; Raat et al., 2004; Rankinen et al., 2006; Whitehead et al., 2015). As stated for example



by Skeffington et al. (2007), in a modelling chain the output uncertainty is typically less than the summed

uncertainty in the input parameters. It can be reasonably stated that the final uncertainty of the modelling

chain is of the same order of magnitude than the uncertainty of the single models. This level of

uncertainty is normally considered acceptable for climate change and land use change analysis in the

literature, in particular when reproducing highly uncertain processes. It is also worth pointing out that

uncertain models can still provide extremely useful information for planners and managers, especially

for scenario analysis where the factors of change in the variable of interest are used rather than the

absolute values of those variables (Cosby et al., 1986). Furthermore, the model parametric uncertainty

must be considered along with other sources of uncertainty, among which the most important is

probably the climate scenarios uncertainty. This is acknowledged to be a very relevant source of

uncertainty in climate change impact assessment studies (Kay et al., 2009; Prudhomme and Davies,

2009a, 2009b; Wilby and Harris, 2006). Here, climate models were not used in the modelling cascade,

but they were still employed to define the “probable” area of the response surfaces. UKCP09 projections

were developed to include a very broad range of possible future climate outcomes, given the large

uncertainty affecting climate model results. Therefore, it is reasonable to think that the ranges of water

quality variations due to changes in average precipitation and temperature include both the uncertainty

regarding future climate and the modelling chain parametric uncertainty (the latter probably being much

lower than the former). Nevertheless, as stated before, a much more comprehensive study is needed

to quantify with more accuracy the uncertainty of the modelling chain results.

Lastly, the methodology used in this study has certain limitations that must be accounted for and

stressed. The scenario neutral methodology, as stated in other studies (Bussi et al., 2016b; Prudhomme

et al., 2010) is based on selecting the main drivers of change given a selected variable. In this case,

the variable is water quality and the drivers of change are changes in annual precipitation and changes

in annual temperature. Other drivers of changes could be considered. For example, Prudhomme et al.

(2010) considered alterations in the seasonality of precipitation, and Bussi et al. (2016a) took into

account changes in extreme precipitation. In this paper we did not address the changes in nutrients

caused by climatic changes other than variations in the average precipitation and temperature. Clearly,

this is a very important limitation, given that changes in extreme events and seasonality can also cause

alterations in the water quality, independently from the variations in the mean. However, in this paper

we only analysed changes in the long-term mean of nutrient concentration, and thus it seems

reasonable to consider only alterations in the average climate. This limitation should also be assessed

in future developments of this study.

6 Conclusions
An assessment of the impact of long-term climatic changes on land use and water quality was carried

out, using the INCA water quality model within a scenario-neutral framework, for the River Thames

catchment (UK). Contrary to most of the previous studies in the field of climate and land use/land cover

changes impact assessment, in the present study the land use was not treated as a static parameter of

the catchment, but rather as a dynamic variable, which varies depending on the long term response of

European agriculture and forestry to climate change (especially precipitation and temperature).

Using a land use allocation model coupled with a water quality model, this study demonstrated a

methodological approach to evaluate the joint impact of climate and land use changes on water quality,

taking into account the autonomous adaptation of land use and agriculture to a changing climate. The

European scale of application of the land use allocation reflects an appropriate scale for the

representation of food and timber production systems and markets. This study also proved the

importance of such a dynamical approach in reproducing land use response to climate, showing that

considering this factor can, in some circumstances, lead to results that are completely different than if

the land use adaptation is not considered.



This study showed how temperature warming is expected to cause a shift from arable land to fertilised

grassland in the River Thames catchment, although this pattern could be slightly altered depending on

the long-term variations of the annual precipitation. Climate change is expected to decrease the average

concentration of nitrate in the River Thames, due to increased evapotranspiration and reduced runoff

from agricultural soils, as well as increased denitrification in the streams caused by lower flows, while

it is expected to increase the average phosphorus concentration, due to a reduction of the river flow

that is necessary to dilute effluents from sewage treatment works. Land use change is likely to enhance

the reduction in nitrate concentration, due to a reduction of the fertilised agriculture area, and it is likely

to mitigate the phosphorus concentration increase, especially in the upper Thames, although less so in

the lower Thames, where the contribution from diffuse sources of phosphorus (e.g., agriculture) are

relatively small compared with the contribution from point sources (effluents). This study demonstrated

the importance of representing catchment land use change as a dynamic variable responding to climate

change in future water quality assessments, considering land use allocation in a way that reflects large-

scale market supply and demand.
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