12 research outputs found

    Fundamental Frequency Characteristics of Modal and Vocal Fry Registers

    Get PDF
    This study examined the distribution of fundamental frequencies in the connected speech of 14 healthy young adults. Acoustic analysis of fundamental frequency was performed on previously collected speech samples of a phonetically balanced reading passage. For the first three sentences of the reading passage, fundamental frequency contours were extracted using PRAAT, a speech analysis software package. The accuracy of these contours were visually verified and manually corrected when needed. The distribution of the fundamental frequency histories for each sample were then analyzed using Gaussian Mixture Model analyses in MATLAB. For most speakers, four statistical modes were identified in the data based on model optimization. The lowest statistical mode was located in a frequency region that was consistent with the vocal fry register. This lowest statistical mode made up only around 5 percent of all glottal cycles, on average across both male and female participants. The results are discussed in relation to normal voice production, voice disorders, and vocal performance

    Molecular and epidemiologic analysis of a county-wide outbreak caused by Salmonella enterica subsp. enterica serovar Enteritidis traced to a bakery

    Get PDF
    BACKGROUND: An increase in the number of attendees due to acute gastroenteritis and fever was noted at one hospital emergency room in Taiwan over a seven-day period from July to August, 2001. Molecular and epidemiological surveys were performed to trace the possible source of infection. METHODS: An epidemiological investigation was undertaken to determine the cause of the outbreak. Stool and blood samples were collected according to standard protocols per Center for Disease Control, Taiwan. Typing of the Salmonella isolates from stool, blood, and food samples was performed with serotyping, antibiotypes, and pulsed field gel electrophoresis (PFGE) following XbaI restriction enzyme digestion. RESULTS: Comparison of the number of patients with and without acute gastroenteritis (506 and 4467, respectively) during the six weeks before the outbreak week revealed a significant increase in the number of patients during the outbreak week (162 and 942, respectively) (relative risk (RR): 1.44, 95% confidence interval (CI): 1.22–1.70, P value < 0.001). During the week of the outbreak, 34 of 162 patients with gastroenteritis were positive for Salmonella, and 28 of these 34 cases reported eating the same kind of bread. In total, 28 of 34 patients who ate this bread were positive for salmonella compared to only 6 of 128 people who did not eat this bread (RR: 17.6, 95%CI 7.9–39.0, P < 0.001). These breads were produced by the same bakery and were distributed to six different traditional Chinese markets., Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) was isolated from the stool samples of 28 of 32 individuals and from a recalled bread sample. All S. Enteritidis isolates were of the same antibiogram. PFGE typing revealed that all except two of the clinical isolates and the bread isolates were of the same DNA macrorestriction pattern. CONCLUSIONS: The egg-covered bread contaminated with S. Enteritidis was confirmed as the vehicle of infection. Alertness in the emergency room, surveillance by the microbiology laboratory, prompt and thorough investigation to trace the source of outbreaks, and institution of appropriate control measures provide effective control of community outbreaks

    Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Paleolimnology 39 (2008): 43-60, doi:10.1007/s10933-007-9094-1.This study demonstrates use of compound-specific radiocarbon analysis (CSRA) for dating Holocene lacustrine sediments from carbonate-hosted Ordy Pond, Oahu, Hawaii. Long-chain odd-numbered normal alkanes (n-alkanes), biomarkers characteristic of terrestrial higher plants, were ubiquitous in Ordy Pond sediments. The δ13C of individual n-alkanes ranged from −29.9 to −25.5‰, within the expected range for n-alkanes synthesized by land plants using the C3 or C4 carbon fixation pathway. The 14C ages of n-alkanes determined by CSRA showed remarkably good agreement with 14C dates of rare plant macrofossils obtained from nearby sedimentary horizons. In general, CSRA of n-alkanes successfully refined the age-control of the sediments. The sum of n-alkanes in each sample produced 70–170 μg of carbon (C), however, greater age errors were confirmed for samples containing less than 80 μg of C. The 14C age of n-alkanes from one particular sedimentary horizon was 4,155 years older than the value expected from the refined age-control, resulting in an apparent and arguable age discrepancy. Several lines of evidence suggest that this particular sample was contaminated by introduction of 14C-free C during preparative capillary gas chromatography. This study simultaneously highlighted the promising potential of CSRA for paleo-applications and the risks of contamination associated with micro-scale 14C measurement of individual organic compounds.This project was funded by Petroleum Research Fund (PRF #40088-ACS) and in part by Sigma Xi, The Scientific Research Society (Grants in aid of research, 2003)

    Evolution of structures and fabrics in the Barbados Accretionary Prism ; Insights from Leg 110 of the Ocean Drilling Program

    Get PDF
    The microstructures and crystal fabrics associated with the development of an amphibolite facies quartzo-feldspathic mylonitic shear zone (Torridon, NW Scotland) have been investigated using SEM electron channelling. Our results illustrate a variety of microstructures and fabrics which attest to a complex shear zone deformation history. Microstructural variation is particularly pronounced at low shear strains: significant intragranular deformation occurs via a domino-faulting style process, whilst mechanical incompatibilities between individual grains result in characteristic grain boundary deformation accommodation microstructures. A sudden reduction in grain size defines the transition to medium shear strains, but many of the boundaries inherited from the original and low shear strain regions can still be recognized and define distinctive bands oriented at low angles to the shear zone margin. Grains within these bands have somewhat steeper preferred dimensional orientations. These domains persist into the high shear strain mylonitic region, where they are oriented subparallel to the shear zone margin and consist of sub-20 μm grains. The microstructures suggest that the principal deformation mechanism was intracrystalline plasticity (with contributions from grain size reduction via dynamic recrystallization, grain boundary migration and grain boundary sliding). Crystal fabrics measured from the shear zone vary with position depending on the shear strain involved, and are consistent with the operation of several crystal slip systems (e.g. prism, basal, rhomb and acute rhomb planes) in a consistent direction (probably parallel to a and/or m). They also reveal the presence of Dauphine twinning and suggest that this may be a significant process in quartz deformation. A single crystal fabric evolution path linking the shear zone margin fabric with the mylonitic fabric was not observed. Rather, the mylonitic fabric reflects the instantaneous fabric which developed at a particular location for a particular shear strain and original parental grain orientation. The mature shear zone therefore consists of a series of deformed original grains stacked on top of each other in a manner which preserves original grain boundaries and intragranular features which develop during shear zone evolution. The stability of some microstructures to higher shear strains, the exploitation of others at lower shear strains, and a continuously evolving crystal fabric, mean that the strain gradient observed across many shear zones is unlikely to be equivalent to a time gradient

    Bulk and clay mineralogy of ODP Leg 110 holes

    No full text
    The mineralogy of both bulk- and clay-sized fractions of samples from Sites 671, 672, and 674 of ODP Leg 110 was determined by X-ray diffraction. The major minerals include quartz, calcite, plagioclase feldspar, and the clay minerals smectite, illite, and kaolinite. The smectite is a dioctahedral montmorillonite and is derived primarily from degradation of volcanic ash. Percentage of smectite varies with sediment age; Miocene and Eocene sediments are the most smectite-rich. High smectite content tends to correlate with elevated porosity, presumably because of the ability of smectite clays to absorb significant amounts of interlayer water. Because of a change in physical properties, the decollement zone at Site 671 formed in sediments immediately subjacent to a section of smectite-rich, high-porosity, Miocene-age sediments. Sediments above the decollement at Site 671, as well as all sediments analyzed from Sites 672 and 674, contain nearly pure smectite characteristic of the alteration of volcanic ash. Within the decollement zone and underthrust sequence, however, the smectite contains up to 65% illite interlayers. Although the illite/smectite could be interpreted as detrital clay derived from South America, its absence in the sediments stratigraphically equivalent to the decollement and underthrust sequences at Sites 672 and 674 favors the interpretation that it originated by diagenetic alteration of pre-existing smectite similar to that in the overlying sediments. A significant percentage of the freshening of the pore waters observed in these zones could be due to the water released during smectite dehydration

    (Table 1) Bulk mineralogy from DSDP Hole 87-584

    No full text
    Compressional velocity (Vp), attenuation (in terms of its inverse, the compressional quality factor Qp), electrical resistivity (sigma), bulk (rho b) and grain (rho g) densities, porosity (phi), and bulk mineralogy were measured on diatomaceous hemipelagic sediments from DSDP Leg 87, Hole 584. Although the sediment lithology and the bulk mineralogy determined by X-ray diffraction are relatively homogeneous, the physical, acoustic and electrical properties of the sediments show irregular trends with depth, with variations in the magnitude and sign of property gradients. Between subbottom depths of 500 and 800 m, Vp, rho b, rho g, and sigma all sharply increase and then sharply decrease, while porosity sharply decreases, and then sharply increases. The changes in gradients are due to abrupt changes in the opal-A content of the sediment, as determined from smear-slide data. Qp decreases with depth to about 650 m and then increases. Such a trend has not been previously documented in laboratory measurements. However, it is assumed that the "attenuation maximum" observed here is due to the increased grain density and decreased porosity caused by the reduction in opal-A content around this depth. The anisotropies for Vp and Qp undergo sign inversions with depth. The Vp anisotropies change from positive (Vph >Vpv) at the top to negative at the bottom of the hole, whereas Qp anisotropies change from negative (Qpv >Qph) to positive. The change in sign with depth is caused by a change in sediment bedding dip from near 0° at the top of the hole to about 65° toward the bottom

    A proteasome inhibitor, bortezomib, inhibits breast cancer growth and reduces osteolysis by downregulating metastatic genes

    No full text
    PURPOSE: The incidence of bone metastasis in advanced breast cancer (BrCa) exceeds 70%. Bortezomib, a proteasome inhibitor used for the treatment of multiple myeloma, also promotes bone formation. We tested the hypothesis that proteasome inhibitors can ameliorate BrCa osteolytic disease. EXPERIMENTAL DESIGN: To address the potentially beneficial effect of bortezomib in reducing tumor growth in the skeleton and counteracting bone osteolysis, human MDA-MB-231 BrCa cells were injected into the tibia of mice to model bone tumor growth for in vivo assessment of treatment regimens before and after tumor growth. RESULTS: Controls exhibited tumor growth, destroying trabecular and cortical bone and invading muscle. Bortezomib treatment initiated following inoculation of tumor cells strikingly reduced tumor growth, restricted tumor cells mainly to the marrow cavity, and almost completely inhibited osteolysis in the bone microenvironment over a 3- to 4-week period as shown by [(18)F]fluorodeoxyglucose positron emission tomography, micro-computed tomography scanning, radiography, and histology. Thus, proteasome inhibition is effective in killing tumor cells within the bone. Pretreatment with bortezomib for 3 weeks before inoculation of tumor cells was also effective in reducing osteolysis. Our in vitro and in vivo studies indicate that mechanisms by which bortezomib inhibits tumor growth and reduces osteolysis result from inhibited cell proliferation, necrosis, and decreased expression of factors that promote BrCa tumor progression in bone. CONCLUSION: These findings provide a basis for a novel strategy to treat patients with BrCa osteolytic lesions, and represent an approach for protecting the entire skeleton from metastatic bone disease
    corecore