85 research outputs found
Recommended from our members
Biomarkers and Noncalcified Coronary Artery Plaque Progression in Older Men Treated With Testosterone.
ObjectiveRecent results from the Cardiovascular Trial of the Testosterone Trials showed that testosterone treatment of older men with low testosterone was associated with greater progression of noncalcified plaque (NCP). We evaluated the effect of anthropometric measures and cardiovascular biomarkers on plaque progression in individuals in the Testosterone Trial.MethodsThe Cardiovascular part of the trial included 170 men aged 65 years or older with low testosterone. Participants received testosterone gel or placebo gel for 12 months. The primary outcome was change in NCP volume from baseline to 12 months, as determined by coronary computed tomography angiography (CCTA). We assayed several markers of cardiovascular risk and analyzed each marker individually in a model as predictive variables and change in NCP as the dependent variable.ResultsOf 170 enrollees, 138 (73 testosterone, 65 placebo) completed the study and were available for the primary analysis. Of 10 markers evaluated, none showed a significant association with the change in NCP volume, but a significant interaction between treatment assignment and waist-hip ratio (WHR) (P = 0.0014) indicated that this variable impacted the testosterone effect on NCP volume. The statistical model indicated that for every 0.1 change in the WHR, the testosterone-induced 12-month change in NCP volume increased by 26.96 mm3 (95% confidence interval, 7.72-46.20).ConclusionAmong older men with low testosterone treated for 1 year, greater WHR was associated with greater NCP progression, as measured by CCTA. Other biomarkers and anthropometric measures did not show statistically significant association with plaque progression
Patient-specific myocardial infarction risk thresholds from AI-enabled coronary plaque analysis
Background: Plaque quantification from coronary computed tomography angiography (CTA) has emerged as a valuable predictor of cardiovascular risk. Deep learning (DL) can provide automated quantification of coronary plaque from CTA. We determined per-patient age and sex-specific distributions of DL-based plaque measurements and further evaluated their risk prediction for myocardial infarction in external samples.Methods: In this international, multicenter study of 2803 patients, a previously validated DL system was used to quantify coronary plaque from CTA. Age and sex-specific distributions of coronary plaque volume were determined from 956 patients undergoing CTA for stable coronary artery disease from 5 cohorts. Multicenter external samples were used to evaluate associations between coronary plaque percentiles and myocardial infarction.Results: Quantitative DL plaque volumes increased with age and were higher in male patients. In the combined external sample (n=1,847), patients in the ≥75th percentile of total plaque volume (unadjusted hazard ratio 2.65, 95% confidence interval 1.47-4.78, p=0.001) were at increased risk of myocardial infarction compared to patients below the 50th percentile. Similar relationships were seen for most plaque volumes and persisted in multivariable analyses adjusting for clinical characteristics, coronary artery calcium, stenosis and plaque volume, with adjusted hazard ratios ranging from 2.38 to 2.50 for patients in the ≥75th percentile of total plaque volume. Conclusions: Per-patient age and sex-specific distributions for deep learning-based coronary plaque volumes are strongly predictive of myocardial infarction, with the highest risk seen in patients with coronary plaque volumes in the ≥75th percentile.Keywords: Deep learning; coronary plaque; risk prediction; coronary CT Angiography; sex-specific analysis; myocardial infarction<br/
Candidate Gene Analysis of Femoral Neck Trabecular and Cortical Volumetric Bone Mineral Density in Older Men
In contrast to conventional dual-energy X-ray absorptiometry, quantitative computed tomography separately measures trabecular and cortical volumetric bone mineral density (vBMD). Little is known about the genetic variants associated with trabecular and cortical vBMD in humans, although both may be important for determining bone strength and osteoporotic risk. In the current analysis, we tested the hypothesis that there are genetic variants associated with trabecular and cortical vBMD at the femoral neck by genotyping 4608 tagging and potentially functional single-nucleotide polymorphisms (SNPs) in 383 bone metabolism candidate genes in 822 Caucasian men aged 65 years or older from the Osteoporotic Fractures in Men Study (MrOS). Promising SNP associations then were tested for replication in an additional 1155 men from the same study. We identified SNPs in five genes (IFNAR2, NFATC1, SMAD1, HOXA, and KLF10) that were robustly associated with cortical vBMD and SNPs in nine genes (APC, ATF2, BMP3, BMP7, FGF18, FLT1, TGFB3, THRB, and RUNX1) that were robustly associated with trabecular vBMD. There was no overlap between genes associated with cortical vBMD and trabecular vBMD. These findings identify novel genetic variants for cortical and trabecular vBMD and raise the possibility that some genetic loci may be unique for each bone compartment. © 2010 American Society for Bone and Mineral Researc
Personality profiles of cultures: aggregate personality traits
Personality profiles of cultures can be operationalized as the mean trait levels of culture members. College students from 51 cultures rated an individual from their country whom they knew well (N = 12, 156). Aggregate scores on Revised NEO Personality Inventory scales generalized across age and gender groups, approximated the individual-level Five-Factor Model, and correlated with aggregate self-report personality scores and other culture-level variables. Results were not attributable to national differences in economic development or to acquiescence. Geographical differences in scale variances and mean levels were replicated, with Europeans and Americans generally scoring higher in Extraversion than Asians and Africans. Findings support the rough scalar equivalence of NEO-PI-R factors and facets across cultures, and suggest that aggregate personality profiles provide insight into cultural differences
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
Spliceosome malfunction causes neurodevelopmental disorders with overlapping features
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function
- …