6 research outputs found

    Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature

    Get PDF
    Background Glioblastoma is the most aggressive primary brain tumor, and is associated with a very poor prognosis. In this study we investigated the potential of microRNA expression profiles to predict survival in this challenging disease. Methods MicroRNA and mRNA expression data from glioblastoma (n = 475) and grade II and III glioma (n = 178) were accessed from The Cancer Genome Atlas. LASSO regression models were used to identify a prognostic microRNA signature. Functionally relevant targets of microRNAs were determined using microRNA target prediction, experimental validation and correlation of microRNA and mRNA expression data. Results A 9-microRNA prognostic signature was identified which stratified patients into risk groups strongly associated with survival (p = 2.26e−09), significant in all glioblastoma subtypes except the non-G-CIMP proneural group. The statistical significance of the microRNA signature was higher than MGMT methylation in temozolomide treated tumors. The 9-microRNA risk score was validated in an independent dataset (p = 4.50e−02) and also stratified patients into high- and low-risk groups in lower grade glioma (p = 5.20e−03). The majority of the 9 microRNAs have been previously linked to glioblastoma biology or treatment response. Integration of the expression patterns of predicted microRNA targets revealed a number of relevant microRNA/target pairs, which were validated in cell lines. Conclusions We have identified a novel, biologically relevant microRNA signature that stratifies high- and low-risk patients in glioblastoma. MicroRNA/mRNA interactions identified within the signature point to novel regulatory networks. This is the first study to formulate a survival risk score for glioblastoma which consists of microRNAs associated with glioblastoma biology and/or treatment response, indicating a functionally relevant signatur

    Convergent morphology in alpinieae (Zingiberaceae): Recircumscribing amomum as a monophyletic genus

    No full text
    The tropical ginger genus Amomum (Zingiberaceae) has always posed challenges for classification based on morphological characters. Previous molecular phylogenetic studies showed Amomum to be paraphyletic but limited sampling and absence of the data of the type Amomum subulatum made it impossible to resolve the paraphyly and make nomenclatural changes. Here, Amomum is further investigated in a multi-marker phylogenetic framework using matK and nrITS including multiple accessions of the type, the genus Elettaria and additional accessions of Amomum, Alpinia, Elettariopsis, Geocharis, Geostachys and Hornstedtia. Amomum is shown to consist of nine clades and Alpinia of six. The genera Elettaria, Elettariopsis, Plagiostachys, and species in Hornstedtia are nested within these clades. Morphological studies of species previously subsumed in Amomum support recognition of new genera that correspond to well-delimited clades in the phylogenetic framework presented here. Recircumscription of the paraphyletic genus Amomum facilitates identification and creates nomenclatural stability. Three genera, Conamomum, Meistera and Wurfbainia, are resurrected, and three new genera Epiamomum, Lanxangia and Sundamomum are described, together with a key to the genera and a nomenclatural synopsis placing 384 specific names (incl. all synonyms) into the new generic framework. Of these 129 represent new combinations and 3 are replacement names. Types of Geocharis and Geostachys are designated. Further studies and specific sampling will be needed to resolve other branches of Alpinioideae containing other polyphyletic genera. © International Association for Plant Taxonomy (IAPT) 2018, all rights reserved

    Convergent morphology in alpinieae (Zingiberaceae): Recircumscribing amomum as a monophyletic genus

    No full text
    The tropical ginger genus Amomum (Zingiberaceae) has always posed challenges for classification based on morphological characters. Previous molecular phylogenetic studies showed Amomum to be paraphyletic but limited sampling and absence of the data of the type Amomum subulatum made it impossible to resolve the paraphyly and make nomenclatural changes. Here, Amomum is further investigated in a multi-marker phylogenetic framework using matK and nrITS including multiple accessions of the type, the genus Elettaria and additional accessions of Amomum, Alpinia, Elettariopsis, Geocharis, Geostachys and Hornstedtia. Amomum is shown to consist of nine clades and Alpinia of six. The genera Elettaria, Elettariopsis, Plagiostachys, and species in Hornstedtia are nested within these clades. Morphological studies of species previously subsumed in Amomum support recognition of new genera that correspond to well-delimited clades in the phylogenetic framework presented here. Recircumscription of the paraphyletic genus Amomum facilitates identification and creates nomenclatural stability. Three genera, Conamomum, Meistera and Wurfbainia, are resurrected, and three new genera Epiamomum, Lanxangia and Sundamomum are described, together with a key to the genera and a nomenclatural synopsis placing 384 specific names (incl. all synonyms) into the new generic framework. Of these 129 represent new combinations and 3 are replacement names. Types of Geocharis and Geostachys are designated. Further studies and specific sampling will be needed to resolve other branches of Alpinioideae containing other polyphyletic genera. © International Association for Plant Taxonomy (IAPT) 2018, all rights reserved

    Data from: Convergent morphology in Alpinieae (Zingiberaceae): recircumscribing Amomum as a monophyletic genus

    No full text
    The tropical ginger genus Amomum (Zingiberaceae) has always posed challenges for classification based on morphological characters. Previous molecular phylogenetic studies showed Amomum to be paraphyletic but limited sampling and absence of the data of the type Amomum subulatum made it impossible to resolve the paraphyly and make nomenclatural changes. Here, Amomum is further investigated in a multi-marker phylogenetic framework using matK and nrITS including multiple accessions of the type, the genus Elettaria and additional accessions of Amomum, Alpinia, Elettariopsis, Geocharis, Geostachys and Hornstedtia. Amomum is shown to consist of nine clades and Alpinia of six. The genera Elettaria, Elettariopsis, Plagiostachys, and species in Hornstedtia are nested within these clades. Morphological studies of species previously subsumed in Amomum support recognition of new genera that correspond to well-delimited clades in the phylogenetic framework presented here. Recircumscription of the paraphyletic genus Amomum facilitates identification and creates nomenclatural stability. Three genera, Conamomum, Meistera and Wurfbainia, are resurrected, and three new genera Epiamomum, Lanxangia and Sundamomum are described, together with a key to the genera and a nomenclatural synopsis placing 384 specific names (incl. all synonyms) into the new generic framework. Of these 129 represent new combinations and 3 are replacement names. Types of Geocharis and Geostachys are designated. Further studies and specific sampling will be needed to resolve other branches of Alpinioideae containing other polyphyletic genera
    corecore