9 research outputs found

    Design and analysis of trials evaluating proportionate interventions and trials with intervention induced clustering

    Get PDF
    Introduction: Individually randomised controlled trials (iRCTs) of complex interventions commonly induce clustered outcomes in the intervention arm only, termed partially nested trials (pnRCTs). In addition, iRCTs are increasingly used to evaluate interventions delivered proportionate to individual need. This can result in only some of the intervention arm having clustered outcomes due to post randomisation allocation to clusters, termed within-arm pnRCTs. Research question: What elements need to be considered in the design, analysis and reporting of complex intervention trials with continuous outcomes, with a particular focus on proportionate interventions and intervention induced clustering in one trial arm? Methods: Firstly, a systematic review of trials of proportionate interventions was performed. Simulation of pnRCTs and within-arm pnRCTs were used to investigate appropriate analysis methods. Sample size formulae for such RCTs were identified and summarised. Finally, a review of publicly funded iRCTs with clustering was undertaken. Results: Proportionate interventions commonly induced within-arm partial nesting. Appropriate analysis methods were identified and demonstrated for pnRCTs, although with few clusters, small cluster sizes, and small intracluster correlation coefficient (ICC) there was no optimal method. Accounting for non-random clustering in within-arm pnRCTs was not possible; however, under realistic scenarios ignoring clustering can provide valid statistical inference. Sample size formulae for pnRCTs require an ICC estimate. From 15 publicly funded iRCTs the median healthcare provider ICC was 0.009. To improve transparency an additional Consolidated Standards of Reporting Trials-nonpharmacologic treatments item related to reporting ICC is suggested. Conclusions: This thesis demonstrates the extent of clustering in both proportionate intervention trials and publicly funded iRCTs. Appropriate analysis methods are demonstrated for pnRCTs. For within-arm pnRCTs it is typically recommended to ignore the clustering. Sample size methods are summarised and empirical ICCs provided. This work provides practical guidance for design, analysis and reporting for continuous outcomes in RCTs with intervention induced clustering in one trial arm

    Cohort Multiple Randomised Controlled Trials (cmRCT) design: efficient but biased? A simulation study to evaluate the feasibility of the Cluster cmRCT design

    Get PDF
    Background The Cohort Multiple Randomised Controlled Trial (cmRCT) is a newly proposed pragmatic trial design; recently several cmRCT have been initiated. This study tests the unresolved question of whether differential refusal in the intervention arm leads to bias or loss of statistical power and how to deal with this. Methods We conduct simulations evaluating a hypothetical cluster cmRCT in patients at risk of cardiovascular disease (CVD). To deal with refusal, we compare the analysis methods intention to treat (ITT), per protocol (PP) and two instrumental variable (IV) methods: two stage predictor substitution (2SPS) and two stage residual inclusion (2SRI) with respect to their bias and power. We vary the correlation between treatment refusal probability and the probability of experiencing the outcome to create different scenarios. Results We found ITT to be biased in all scenarios, PP the most biased when correlation is strong and 2SRI the least biased on average. Trials suffer a drop in power unless the refusal rate is factored into the power calculation. Conclusions The ITT effect in routine practice is likely to lie somewhere between the ITT and IV estimates from the trial which differ significantly depending on refusal rates. More research is needed on how refusal rates of experimental interventions correlate with refusal rates in routine practice to help answer the question of which analysis more relevant. We also recommend updating the required sample size during the trial as more information about the refusal rate is gained

    Evaluation of biases present in the cohort multiple randomised controlled trial design: a simulation study

    Get PDF
    Background The cohort multiple randomised controlled trial (cmRCT) design provides an opportunity to incorporate the benefits of randomisation within clinical practice; thus reducing costs, integrating electronic healthcare records, and improving external validity. This study aims to address a key concern of the cmRCT design: refusal to treatment is only present in the intervention arm, and this may lead to bias and reduce statistical power. Methods We used simulation studies to assess the effect of this refusal, both random and related to event risk, on bias of the effect estimator and statistical power. A series of simulations were undertaken that represent a cmRCT trial with time-to-event endpoint. Intention-to-treat (ITT), per protocol (PP), and instrumental variable (IV) analysis methods, two stage predictor substitution and two stage residual inclusion, were compared for various refusal scenarios. Results We found the IV methods provide a less biased estimator for the causal effect when refusal is present in the intervention arm, with the two stage residual inclusion method performing best with regards to minimum bias and sufficient power. We demonstrate that sample sizes should be adapted based on expected and actual refusal rates in order to be sufficiently powered for IV analysis. Conclusion We recommend running both an IV and ITT analyses in an individually randomised cmRCT as it is expected that the effect size of interest, or the effect we would observe in clinical practice, would lie somewhere between that estimated with ITT and IV analyses. The optimum (in terms of bias and power) instrumental variable method was the two stage residual inclusion method. We recommend using adaptive power calculations, updating them as refusal rates are collected in the trial recruitment phase in order to be sufficiently powered for IV analysis

    Statistical design and analysis in trials of proportionate interventions: a systematic review

    Get PDF
    Background: In proportionate or adaptive interventions, the dose or intensity can be adjusted based on individual need at predefined decision stages during the delivery of the intervention. The development of such interventions may require an evaluation of the effectiveness of the individual stages in addition to the whole intervention. However, evaluating individual stages of an intervention has various challenges, particularly the statistical design and analysis. This review aimed to identify the use of trials of proportionate interventions and how they are being designed and analysed in current practice. Methods: We searched MEDLINE, Web of Science and PsycINFO for articles published between 2010 and 2015 inclusive. We considered trials of proportionate interventions in all fields of research. For each trial, its aims, design and analysis were extracted. The data synthesis was conducted using summary statistics and a narrative format. Results: Our review identified 44 proportionate intervention trials, comprising 28 trial results, 13 protocols and three secondary analyses. These were mostly described as stepped care (n=37) and mainly focussed on mental health research (n=30). The other studies were aimed at finding an optimal adaptive treatment strategy (n=7) in a variety of therapeutic areas. Further terminology used included adaptive intervention, staged intervention, sequentially multiple assignment trial or a two-phase design. The median number of decision stages in the interventions was two and only one study explicitly evaluated the effect of the individual stages. Conclusions: Trials of proportionate staged interventions are being used predominantly within the mental health field. However, few studies consider the different stages of the interventions, either at the design or the analysis phase, and how they may interact with one another. There is a need for further guidance on the design, analyses and reporting across trials of proportionate interventions

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study

    Get PDF
    BACKGROUND: In individually randomised trials we might expect interventions delivered in groups or by care providers to result in clustering of outcomes for participants treated in the same group or by the same care provider. In partially nested randomised controlled trials (pnRCTs) this clustering only occurs in one trial arm, commonly the intervention arm. It is important to measure and account for between-cluster variability in trial design and analysis. We compare analysis approaches for pnRCTs with continuous outcomes, investigating the impact on statistical inference of cluster sizes, coding of the non-clustered arm, intracluster correlation coefficient (ICCs), and differential variance between intervention and control arm, and provide recommendations for analysis. METHODS: We performed a simulation study assessing the performance of six analysis approaches for a two-arm pnRCT with a continuous outcome. These include: linear regression model; fully clustered mixed-effects model with singleton clusters in control arm; fully clustered mixed-effects model with one large cluster in control arm; fully clustered mixed-effects model with pseudo clusters in control arm; partially nested homoscedastic mixed effects model, and partially nested heteroscedastic mixed effects model. We varied the cluster size, number of clusters, ICC, and individual variance between the two trial arms. RESULTS: All models provided unbiased intervention effect estimates. In the partially nested mixed-effects models, methods for classifying the non-clustered control arm had negligible impact. Failure to account for even small ICCs resulted in inflated Type I error rates and over-coverage of confidence intervals. Fully clustered mixed effects models provided poor control of the Type I error rates and biased ICC estimates. The heteroscedastic partially nested mixed-effects model maintained relatively good control of Type I error rates, unbiased ICC estimation, and did not noticeably reduce power even with homoscedastic individual variances across arms. CONCLUSIONS: In general, we recommend the use of a heteroscedastic partially nested mixed-effects model, which models the clustering in only one arm, for continuous outcomes similar to those generated under the scenarios of our simulations study. However, with few clusters (3-6), small cluster sizes (5-10), and small ICC (≤0.05) this model underestimates Type I error rates and there is no optimal model
    corecore