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Abstract

Background: The Cohort Multiple Randomised Controlled Trial (cmRCT) is a newly proposed pragmatic trial design;
recently several cmRCT have been initiated. This study tests the unresolved question of whether differential refusal
in the intervention arm leads to bias or loss of statistical power and how to deal with this.

Methods: We conduct simulations evaluating a hypothetical cluster cmRCT in patients at risk of cardiovascular
disease (CVD). To deal with refusal, we compare the analysis methods intention to treat (ITT), per protocol (PP) and
two instrumental variable (IV) methods: two stage predictor substitution (2SPS) and two stage residual inclusion
(2SRI) with respect to their bias and power. We vary the correlation between treatment refusal probability and the
probability of experiencing the outcome to create different scenarios.

Results: We found ITT to be biased in all scenarios, PP the most biased when correlation is strong and 2SRI the
least biased on average. Trials suffer a drop in power unless the refusal rate is factored into the power calculation.

Conclusions: The ITT effect in routine practice is likely to lie somewhere between the ITT and IV estimates from
the trial which differ significantly depending on refusal rates. More research is needed on how refusal rates of
experimental interventions correlate with refusal rates in routine practice to help answer the question of which
analysis more relevant. We also recommend updating the required sample size during the trial as more information
about the refusal rate is gained.
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Background
Randomised controlled trials (RCTs) often fail to meet
recruitment targets and are costly [1]. This problem can
be even more prevalent in comparative effectiveness re-
search where more patients are needed to detect smaller
differences between treatments. Furthermore, the results
from most randomised controlled trials may not be gen-
eralisable to routine practice [2], yet we use the results
from these trials to inform clinical decision making [3].
There is a clear need for more pragmatic trials which
are cost efficient, integrated with routine clinical care,
have less stringent entry criteria and can address the
clinical questions that current RCTs cannot [4–7].
The Cohort Multiple Randomised Controlled Trial

(cmRCT) design can simplify the recruitment and con-
duct of trials compared with current RCTs. It was first
proposed in 2010 [8], and is beginning to be used in
practice with a total of 5 registered trials from 7 cohorts
[9–16]. In this design, a large cohort is identified (e.g.,
patients at high risk of cardiovascular disease [CVD])
and followed using routinely collected data such as elec-
tronic health records [17]. The same cohort can be used
for multiple interventions. Each intervention is offered
to a randomly selected sample of patients eligible for
that intervention, who are then compared with the rest
of the eligible patients from the cohort that are still be-
ing treated as usual [8]. Randomisation can occur either
at a patient or a cluster (site) level. The cluster design
can offer dramatically improved accrual [1] and can fur-
ther reduce costs through the implementation of the in-
terventions in fewer places; cluster designs are the focus
of this paper.
The main advantages of cmRCTs are the low cost of

recruiting the control group, the possibility to use it for
multiple trials and the comparison of interventions to
real life practice (the control group are not contacted for
further consent). However, refusal to participate in the
trial happens post randomisation so excluding these pa-
tients may result in selection bias. Alternatively an
intention to treat (ITT) analysis could be used; however
the refusal rates in a cmRCT may not reflect those in
routine practice as the intervention may be viewed as
experimental. In this case the ITT effect may lack inter-
pretation outside the trial setting. Depending on the re-
fusal rate it may be preferable to calculate the effect of
accepting the treatment, this will be referred to as the
treatment effect for the remainder of this paper. Refusal
can cause a loss of statistical power and a bias in the es-
timation of the treatment effect, particularly if it is cor-
related with the outcome of interest. Instrumental
variable analysis (IV) is a method to account for un-
measured confounding in epidemiological studies [18,
19] and can for non-compliance in RCTs [20, 21]. It is
also applicable to the problem of treatment refusal in a

cmRCT setting. The aim of this paper is (1) to estimate
the extent of bias and loss of statistical power with vari-
ous refusals scenarios, (2) to test the robustness of IV
methods to correct for bias due to refusals and (3) devise
strategies to account for loss in power. There is cur-
rently very little literature on the topic of cmRCTs, we
provide practical recommendations to trial designers
and decision makers on the conditions under which
cluster cmRCT is a viable design for point of care trials
and which statistical analysis methods to use.

Methods
A series of simulations are performed using Base SAS
9.4 Software in which cluster cmRCTs are conducted. In
order to provide more realistic simulations they are
based on an example of a cohort of patients at high risk
of developing cardiovascular disease (CVD) and eligible
for lipid lowering drugs according to the relevant criteria
in the principal UK guidelines [22]. A novel intervention
is tested against treatment as usual with a primary out-
come of the time until a CVD event. This is an outcome
that is of direct importance to a patient and may be
identified with routinely collected data. Three patient
characteristics are simulated: probability of refusing the
intervention treatment, the risk of having a CVD event,
and the time to death or censoring. Different scenarios
are created by changing the average refusal probability
of the population and changing the correlation between
individuals’ risk of having an event and their probability
of refusing treatment. The probability of a clinician refus-
ing to offer the treatment to each patient is also simulated,
and correlated to varying extents with patient risk. Once
the patient characteristics have been generated, trial data
is simulated through the same process of a cmRCT: treat-
ment randomisation, refusal of treatment, application of
intervention to those who accept and then the generation
of times until an event. Weibull distributions are used to
generate survival times. Each of the analysis methods ex-
plained in Analysis Methods are then applied to the simu-
lated trial data to estimate the intervention effect. The exact
simulation process is detailed in Simulation procedure.

Analysis methods
Four different methods for the analysis of a cluster
cmRCT are tested. The methods are ITT, per protocol
(PP) and two IV methods. ITT is the recommended
method of analysis in pragmatic trials [5, 23, 24] analysing
the groups based on the random treatment allocation. PP
defines the treatment groups on the basis of the actual
treatment received, with only those who follow the allo-
cated treatment included in the analysis. The two IV
methods tested are the two stage predictor substitution
(2SPS) and two stage residual inclusion (2SRI) as outlined
practically by Terza et al., [25]. They are both two stage
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modelling techniques and start by fitting a first stage
model with treatment allocation as the explanatory vari-
able and treatment received as the dependent variable
(here treatment allocation acts as the IV). This model is
then used to calculate the predicted values for treatment
received and the residuals. In 2SPS, a second stage
model is fitted to the outcome data using the predicted
values for treatment received as the explanatory vari-
ables. In 2SRI, the second stage model is fitted to the
outcome data using both the residuals and the actual
treatment received as explanatory variables. The stand-
ard errors of parameter estimates in two stage model-
ling procedures are too small hence non-parametric
bootstrapping [26] should be used to calculate them. IV
estimators were the chosen method to estimate the
causal effect as IV methods are believed to perform well
in RCTs with non-compliance with assumptions more
easily argued to hold. [27]. There is a wealth of litera-
ture on the theoretical properties of causal effect esti-
mates and IVs [18–21, 28] which is not recited in this
paper. Instead the performances of the four different
analysis methods in a variety of scenarios are evaluated
with respect to bias, standard error and statistical
power. We define bias as the error in the estimation of
the treatment effect as defined in section 1 (effect of
accepting treatment).

Simulation procedure
Table 1 contains details of all variables used in the simu-
lations. The cluster size chosen is J = 620 to match the
average number of eligible patients per UK practice. This
is calculated using published figures on GP practice size
from the Health and Social Care Information Centre
(HSCIC) [29] and statistics on the prevalence of CVD
from the National Institute for Health and Care Excel-
lence (NICE) [30]. The cluster size J is constant as it has
been shown that variable cluster size has no effect on
the results in terms of bias [31, 32]. The variances of the
individual and cluster level random effects, σε

2 and σu
2,

and the shape and scale of the Weibull distribution for
time to CVD event, λc and γc, are chosen to match the
mean 10-year CVD risk to published figures of 21.1 %
(standard deviation 8.6 %) [22]. The mortality (censoring
distribution) shape and scale, γm and λm, and the vari-
ances σε

2 and σu
2 give censoring of 5 % of all events and a

correlation of 0.25 between Tik
c and Tik

m to represent in-
formative censoring.
For each scenario detailed previously, the following

procedure was implemented:

For j = 1,2,…,1000:
1) Generate the random effects ik and Uk for each

patient and cluster. i = 1,2,…,I. k = 1,2,…,K.

Table 1 Description of all variables used in simulation

Number of patients in cohort, control arm and intervention arm N, Ncon, Nint

Number of clusters in trial K

Size of each cluster J = 620

Treatment allocated to kth cluster Zk = 0/1 for control/intervention

Treatment received by ith individual from kth cluster Xik = 0/1 for control/intervention

Time until CVD event for ith individual from the kth cluster Tcik∼Weibull γc; λce− βXikþεikþUkð Þ=γc
� �

Time until mortality (censoring distribution) for the ith individual from the kth cluster Tmik ∼Weibull γm; λme− εikþUkð Þ= γm
� �

Common baseline hazard function for time until CVD event hc tð Þ ¼ γctγc−1=λc
γc ; γc ¼ 1:2; λc ¼ 36

Common baseline hazard function for time until mortality hmðtÞ ¼ γmtγm−1=λm
γm ; γm ¼ 1:2; λm ¼ 55

Individual hazard function for time until CVD event hcik tð Þ ¼ hc tð Þe εikþUkþβXikð Þ

Individual hazard function for time until mortality hmik tð Þ ¼ hm tð Þe εikþUkð Þ

Individual level random effects ɛik ∼ N(0, σɛ2)

Cluster level random effects Uk ∼ N(0, σu2)

Intervention effect β = − 0.32

Ten year risk of a CVD event rik = P(Tik
c < 10| Xik = 0, εik, Uk)

Individual and average probability of patient refusing treatment pik ; p ¼
X

i;k

pik
N

Individual and average probability of clinician refusing to offer treatment qik ; q ¼
X

i;k

qik
N

Correlation between patient refusal probability and patient risk ρp

Correlation between clinician refusal probability and patient risk ρq

Censoring indicator Cik = I(Tik
c ≥min(Tik

m, Tmax))

Trial follow up time Tmax = 3

Random variable observed for each patient Yik =min(Tik
c , Tik

m, Tmax)
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2) For each patient, calculate unique 10 year risks
(under the counterfactual scenario of receiving
standard care) of a CVD event, rik.

3) Assign patient and clinician refusal probabilities pik
and qik
3a) Order patients by their risk, rik.
3b) Assign refusal probabilities sequentially in a

linear fashion between the lower limit (LL) and
upper limit (UL) such that such that ∑ pik/N = p
and ∑ qik/N = q.

4) Randomise treatment allocation Zk to control or
intervention on a 4:1 basis. Zk = 0/1 if assigned to
control/intervention.

5) Generate the treatment received where Xik = 0/1
if control/intervention is received. If Zk = 0 then
Xik = 0, if Zk = 1 then Xik =min {Bernoulli(1 − pik),
Bernoulli(1 − qik)}.

6) Apply intervention effect β and random effects to
the hazard function, hcik tð Þ ¼ hc tð Þe βXikþεikþUkð Þ.

7) Generate survival times Tik
c and Tik

m. These survival
distributions correspond to the respective hazard
functions.

8) Generate the censoring indicator Cik, The total
observed trial data is then {Yik, Cik, Zik, Xik}, a set of
censored survival data, treatment allocations and
treatments received.

9) Fit a Cox proportional hazards model to the data
with respect to the four analysis methods ITT, PP,
2SRI and 2SPS, to produce an estimate β̂ j of the
intervention effect β, which is the log of the hazard
ratio, and record the p-value, pj.

When j = 1000, calculate the mean β ¼
X

j
β̂j=1000 , the

percentage bias β−β
� �

=β and the statistical power
∑jI(pj < 0.05)/1000. Also, calculate a parametrically
bootstrapped standard error of the individual esti-

mate s:e: β̂
� �

¼ s:d: β̂j

� �
, the standard error of the mean

s:e: β
� � ¼ s:d: β̂j

� �
=1000 , and a confidence interval for the

percentage bias CI ¼ 100 � β−
���

1:96 � s:e: β
� �Þ−βÞ=β;

100 � β þ 1:96 � s:e: β
� �� �

−β
� �

=β.
Different scenarios are created by varying the fol-

lowing variables. The intra-cluster coefficient (ICC)
takes values 0.025 and 0.05, simulated by (σε

2, σu
2) = (0.6,

0.2) and (0.57, 0.27) respectively. Average patient and clin-
ician refusal probabilities p and q take values 0.1, 0.2 and
0.3. The correlation between refusal probability and risk,
ρp, takes values zero, low, medium and high, simulated by
having lower limits and upper limits for individual refusal

probabilities as LL;ULð Þ∈ p; pð Þ; 2p
3 ;

4p
3

� �
; p

3 ;
5p
3

� �
; 0; 2pð Þ� �

.
The correlation between clinician refusal and risk takes
the same set of values. The reason for this structure is to
give control over the correlation between individual risk

and refusal probabilities. The treatment effect is fixed at
β = − 0.32, which equates to on average a 25 % reduction
in 10 year risk of CVD. 1000 independent sets of inde-
pendent trial data are generated for each scenario.
Sample sizes are calculated at a fixed ratio of 4:1 con-

trol to study intervention, the type 1 error is 0.05 and re-
quired power is 0.8. Sample sizes are calculated through
simulation [33] as sample size formulas for informatively
censored clustered survival data are not common. Trials
characteristics (effect size, refusal rate, baseline risk) are
assumed to be known. Trial data is simulated using the
above process and analysed using ITT. For each combin-
ation of refusal rates, the smallest N (that is a multiple
of J = 620) such that the proportion of p-values < 0.05 is
80 % is chosen as the required sample size in that sce-
nario. There are then two recruitment methods which
alter the required sample size. Recruitment method 1
calculates the sample size assuming no refusal. Recruit-
ment method 2 factors in the refusal rate in the sample
size calculation (assuming refusal to be non-informative
and independent of individual risks). All simulation scenar-
ios are run using both recruitment methods. The power
realised varies from 0.8 as we use the smallest number of
clusters that achieve at least a power of 0.8, in recruitment
method 2 this changes depending on the refusal rate.
The outcome of interest is the time until a CVD event

so cox proportional hazards models are fitted to produce
estimates for the intervention effect. To account for the
clustering of the data, three types of Cox proportional
hazard model are fitted: marginal, lognormal frailty,
and gamma frailty models [34, 35]. The lognormal
model is correctly specified because the generated ran-
dom effects (frailties) are normally distributed (Table 1),
whereas the gamma frailty model is miss specified. The
output from the robust marginal model has a different
interpretation to the frailty models in that the hazard
ratio returned is between any two randomly selected
patients from the population, as opposed to the hazard
ratio of any two people randomly selected from the
same cluster [35]. Clustering is not taken into account
in the first stage of the IV model as the inclusion of
residuals in the second stage model (2SRI) is expected
to take account of variation in refusal rates between
clusters.

Results
Figure 1 shows the magnitude of bias and loss of statis-
tical power for the four analysis methods for varying
average refusal rates and negative correlation between
refusal and individual risk (for recruitment method 1).
As expected, ITT underestimates the treatment effect.
Refusal probabilities as small as 0.1 lead to bias between
9 and 16 %, refusal of 0.2 between 18 and 30 %, and re-
fusal of 0.3 between 21 and 42 %, depending on the
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direction of the correlation. PP provides the most biased
effect estimates when correlations are large with
substantial reductions in statistical power. The two IV
analyses provide similar results and substantially less
biased effect estimates compared with ITT. The bias
with both IV methods is below 6 % in all scenarios
except when refusal is high with negative correlation,
in which case 2SPS and 2SRI overestimate the effect
of the study intervention by 13 and 17 % respectively.
All methods have reduced statistical power with
increasing refusals. ITT has the same statistical power
as the 2SPS method in nearly all scenarios (i.e., the
lines in Fig. 1 overlapping). For positive correlation
(Fig. 2) 2SRI provides effect estimates with the lowest
level of bias compared to the three other analysis
methods, although it is associated with a statistical
power between 0.8 and 0.56 rather than the 0.83
obtained from the sample size calculation. The trends
in bias and power for ITT and 2SPS change direction

with the correlation causing an increase in bias and a
drop in power.
Figure 3 shows the results for recruitment method 2

and negative correlation between refusal and individual
risk. There is no difference from recruitment method 1
with respect to bias or trends in statistical power; how-
ever the overall power of the trial stays consistent as
refusal probabilities are changed. The only visible effect
of changing refusal probabilities is to strengthen the
effect of changing correlation. Importantly, the power
of ITT and IV methods tends not to drop below the
desired level. With positive correlations and recruit-
ment method 2 (Fig. 4) there is a similar pattern when
comparing to recruitment method 1. 2SRI provides the
least biased estimates with the statistical power ranging
between 0.81 and 0.88, depending on refusal. 2SPS
and ITT yield more biased estimates with increasing
reductions in statistical power as the rate of refusal
increased.

Fig. 1 Percentage bias and power of the four analysis methods for varying levels of patient refusal and correlation between individual patient
refusal probabilities and risk. Clinician refusal = 0, correlation is negative, recruitment method 1 is used and ICC =0.025. The black line in the
power graph represents the expected power in the trial. A lognormal frailty model is fitted to the data
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Sensitivity analyses are conducted evaluating the
effects of miss-specification of the statistical models.
Figure 5 and Fig. 6 show the estimates and statistical
power with a robust marginal and gamma frailty model
fitted to the data respectively (for recruitment method 2
and negative correlations). The miss-specified models
perform slightly worse than the correctly specified
models in terms of percentage bias while the statistical
power is slightly higher. If there was a greater variation
between clusters, you would expect a lack of collapsibil-
ity to cause a difference between the marginal and frailty
estimates [36]. This should be considered along with
what output is desired (conditional/marginal) if running
a cluster cmRCT. Results for positive correlations also
did not vary greatly with model miss-specifications
(data not shown).
In Appendix A a look into the accuracy of the bias

estimates are provided and results from scenarios
including changes in the ICC and when clinician
refusal > 0.

Discussion
This study has shown that refusal of a novel intervention
in a cluster cmRCT design can lead to bias and reduc-
tions in power. The ITT estimates have a high bias,
which increases with increasing refusal and is affected
by correlations between refusal and the risk of outcome
of interest. IV analyses using the 2SRI method substan-
tially reduce the bias but yield small overestimates (gen-
erally < 6 %) of the treatment effect when refusal rates
are high and correlation strong. The 2SPS estimates for
IV are highly affected by the correlation structure and
produce very biased estimates with positive correlation.
Recruitment method 1 causes a loss in statistical power
irrelevant of the analysis method used. On the other
hand, cluster cmRCT are correctly powered or overpow-
ered for recruitment method 2.
This study found, as expected, that refusals can lead to

a large underestimate of the treatment effect when ITT
is used (also known as dilution bias) [37]. Despite this,
the published protocols of cmRCT either propose ITT

Fig. 2 Percentage bias and power of the four analysis methods for varying levels of patient refusal and correlation between individual patient
refusal probabilities and risk. Clinician refusal = 0, correlation is positive, recruitment method 1 is used and ICC =0.025. The black line in the power
graph represents the expected power in the trial. A lognormal frailty model is fitted to the data
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for the primary analysis [9, 11, 12] or methods have not
been stated yet [10, 13–16]. This follows the recommen-
dation to use ITT for the analysis of pragmatic trials [5,
24, 38]. The main argument for this is that treatment re-
fusals do happen in actual clinical practice and ITT
would thus evaluate the value of offering a treatment.
However, as stated earlier, refusal rates may be different
in trials (due to e.g. more complex consent and recruit-
ment procedures) and the ITT effect will not reflect that
in routine practice. In cmRCTs, randomisation precedes
the recruitment and consent procedures, and thus may
affect results more than traditional trials. The results
presented here highlight the large biases associated with
ITT when estimating the treatment effect. Our results
indicate the importance of evaluating in a cmRCT
whether refusal rates are higher than expected in actual
clinical practice (is estimating the ITT effect valuable?)
and whether this refusal may be related to the outcome
as this may increase the bias in estimating the treatment
effect. It has been reported that the risk of early

discontinuation may be correlated with the risk of out-
come of interest [39].
IV deals with refusal and non-compliance in RCTs to

some extent [27, 40] and has been adopted in practice
[41–43]. This study found that IV indeed minimised bias
due to refusal. Of the published cmRCTs, only two trials
RECTAL BOOST [9] and SPIN [11] propose to use IV,
and it is as a secondary analysis or if refusal rates exceed
a predefined limit. The two IV methods proposed are
2SPS and 2SRI. 2SPS is a simple extension of ITT and
can be obtained by dividing the ITT estimate by the
average treatment refusal. Our simulations show that
2SPS is generally more biased than 2SRI. We also show
that 2SPS estimates are sensitive to the data structure,
when the direction of correlation between refusal and
risk changed so did the trend in effect estimates. In the
scenarios where 2SPS is less biased than 2SRI (negative
correlation), it is only by a small amount. This is in line
with the findings by Terza et al. [25], who concluded
that 2SRI is the more appropriate method for nonlinear

Fig. 3 Percentage bias and power of the four analysis methods for varying levels of patient refusal and correlation between individual patient
refusal probabilities and risk. Clinician refusal = 0, correlation is negative, recruitment method 2 is used and ICC =0.025. The black line in the
power graph represents the expected power in the trial. A lognormal frailty model is fitted to the data
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models and we therefore recommend 2SRI should be
used if an IV analysis is carried out. However the effect
estimate of interest in a pragmatic trial (the ITT effect
in routine practice) is likely to lie somewhere in between
the ITT and IV estimates and contextual information is
needed to assess this. For example, if refusal rates are
particularly high (> 50 %) then the IV estimate is unlikely
to represent the effect of this drug in routine practice.
This is in line with the findings of van der Velden et al
[44], who imply both ITT and IV analyses should be car-
ried out to analyse the results of a cmRCT.
Recruitment method 1 causes a drop in statistical

power when using ITT or IV methods. This drop in
power can be explained by the dilution bias for ITT as
the apparent treatment effect is smaller. Although the
IV estimate is generally unbiased, it suffers the same
drop in power due to larger standard errors resulting
from using a two stage modelling technique. If refusal
rates are factored into the sample size calculation
(recruitment method 2) the statistical power improves as

expected. There is a paucity of literature on the methods
for powering a RCT in case of refusals when using IV;
most literature deals with ITT [45–47]. Our study high-
lights the need to take into account treatment refusal
into the power calculation. Methods, such as simula-
tions, will need to be developed to adjust IV analyses
(with 2SRI) for non-informative as well informative
refusals.
A limitation of this study is that we have only consid-

ered a homogeneous treatment effect. The results of this
study are thus not generalizable to a heterogeneous
treatment effect. The results of [48] can be referred to
when deciding on which method to use if a heteroge-
neous treatment effect is thought to be present. In the
case of a heterogeneous treatment effect, under certain
assumptions IV estimates the complier average causal ef-
fect (CACE) [28]. The results from IV analysis should be
presented following procedures laid out by Swanson and
Hernán [49]. A second limitation is that the simulations
presented here are based on aggregate data which may

Fig. 4 Percentage bias and power of the four analysis methods for varying levels of patient refusal and correlation between individual patient
refusal probabilities and risk. Clinician refusal = 0, correlation is positive, recruitment method 2 is used and ICC =0.025. The black line in the power
graph represents the expected power in the trial. A lognormal frailty model is fitted to the data
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not be relevant to certain populations. It is thus import-
ant that each cluster cmRCT assesses prior to the start
of trial the likely scenarios for refusal, risk of outcomes
and cluster sizes and then estimate the potential impact
on statistical power and level of bias. This would then
guide the feasibility of the cluster cmRCT and the re-
quired sample size.

Conclusions
In conclusion, cluster cmRCT can be an efficient design
for conducting pragmatic trials, however there are still
many questions to answer: What is the impact on bias
and power when multiple trials are conducted within a
cohort? What would be the influence of effect modifi-
cation? What will happen if there is an overlap is sec-
ondary endpoints? The question addressed in this
paper is how to deal with differential refusal in the
intervention arm. If the refusal in a cmRCT is similar
to that in routine clinical practice, then an ITT analysis

will provide a valid estimate of the ITT effect in routine
practice. If refusal differs from that in routine clinical
practice, an IV analysis may provide a more accurate es-
timate. More research is needed on how refusal rates of
experimental interventions correlate with refusal rates
in routine practice to help answer the question of
which analysis more relevant. For now, we recommend
running both analyses and providing context about the
intervention. Refusals can also adversely affect the stat-
istical power of a cluster cmRCT and should be incor-
porated into the power calculation. An incorrect
estimate of the refusal rate can lead to the recruitment
of more patients than necessary or an underpowered
trial. Therefore we recommend updating the required
sample size during the trial as more information about
the refusal rate is gained. Finally, it is important to note
that the results, recommendations and discussion
raised in this paper are very much applicable to the
standard cmRCT design.

Fig. 5 Percentage bias and power of the four analysis methods for varying levels of patient refusal and correlation between individual patient
refusal probabilities and risk. Clinician refusal = 0, correlation is negative, recruitment method 2 is used and ICC =0.025. The black line in the
power graph represents the expected power in the trial. A robust marginal frailty model is fitted to the data
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Appendix A
In scenarios where clinician refusal is bigger than 0 the
trends seen in Figs. 1, 2, 3 and 4 carry over to the
changes in clinician refusal and correlation. The main
result to report is that 2SRI performs similarly in all sce-
narios. In fact the bias only reaches over 6 % in one sce-
nario where clinician refusal and correlation are 0.1 and
zero (Fig. 1). This shows the 2SRI method is only slightly
biased even as refusal rates and correlation strengths are
quite large. In the same scenarios when the ICC = 0.05
the required sample sizes for each recruitment method
changed, however the biases and power in each scenario
were no different. The standard error of individual IV

estimates (s:e: β̂
� �

), which have not been reported, are

always larger than that of ITT and PP. In recruitment
method 1 the standard error of the IV methods increases
to around 0.15, almost half the magnitude of β. In re-
cruitment method 2 the size of the standard errors did
not change from around 0.11 (reflected by the consistent

power). The 95 % confidence intervals around the per-
centage bias calculated is always between ∓ 2 – 3 % of
the bias shown.
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