27 research outputs found

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    An Undercooled Scree Slope Detected by Geophysical Investigations in Sporadic Permafrost below 1000 M ASL, Central Austria

    No full text
    Multi-method geophysical investigations, accompanied by microclimatic measurements and vegetation mapping, were performed at an undercooled scree slope near Schladming (Austria) in the eastern Alps in order to detect, map and monitor mountain permafrost. The study site, at an elevation of 990m asl, is one of the lowest-lying examples of a cold, undercooled scree slope in the Alps. Geophysical measurements with electrical resistivity tomography, ground-penetrating radar and seismic refraction indicate the presence of several isolated areas of frozen ground over a full year, far below the regional lower limit of mountain permafrost. Frozen sediments identified at shallow depths (beneath 1-3m) were 5-20m thick and ice-rich. Near-surface temperatures at the foot of the scree slope were strongly influenced by pronounced cooling. Vegetation mapping showed a dominance of cryophilic plant species. The results suggest that the scree slope is strongly influenced by the interplay of vegetation cover, ground thermal regime and the distribution of frozen sediments. Copyright (C) 2014 John Wiley & Sons, Ltd

    Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful

    No full text
    Our study addressed mercury contamination hotspots that originated from Chemical Factory Marktredwitz, Germany. The factory was abandoned in 1985 but its legacy has been persistently endangering the river ecosystem of the Ohře River, a Labe (Elbe) River tributary in the Czech Republic. We identified the timing for the peak contamination of fine sediments entering the Skalka Reservoir located on the Ohře River downstream of the Czech German boundary. Age constraints for the reservoir sediments were obtained using gamma spectrometry analyses of 137Cs and unsupported (excess) 210Pb. We also summarised historical and current Hg concentrations in suspended particulate matter in the Kössein–Röslau–Ohře river system and recent Hg concentrations in aquatic plants. Secondary contamination and its transfer to the Czech stretch of the Ohře River and the Skalka Reservoir through severely contaminated suspended material peaked during the period of factory closure and the start of remediation. The Hg contamination import to the Czech Republic is not likely to improve if the river is left without traditional management of bank reinforcement. This case study highlights a gap in safety regulations for the management of severely contaminated rivers and demonstrates the need to consider the role of historical contamination in river ‘renaturation’

    When one disease is not enough: Succinyl-CoA: 3-oxoacid coenzyme A transferase (SCOT) deficiency due to a novel mutation in OXCT1 in an infant with known phenylketonuria

    No full text
    AbstractA 9-month-old Turkish girl was admitted several times within 3 months to the hospital in reduced general condition and with extreme tachypnea. The patient had been diagnosed with phenylketonuria (PKU) in newborn screening and has been treated with a low phenylalanine diet and amino acid supplements. Each time an unexplained pronounced metabolic acidosis was noted, and the child was treated with sodium-bicarbonate and glucose-electrolyte infusions. The acidosis with only slightly abnormal glucose, normal lactate levels and pronounced ketonuria suggested a defect in ketone body utilization. Succinyl-CoA: 3-oxoacid CoA transferase (SCOT) enzyme activity was low in patient’s fibroblasts. Mutation analysis of the corresponding</jats:p

    Advanced Ti–Nb–Ta Alloys for Bone Implants with Improved Functionality

    No full text
    The additive manufacturing of titanium–niobium–tantalum alloys with nominal chemical compositions Ti–xNb–6Ta (x = 20, 27, 35) by means of laser beam powder bed fusion is reported, and their potential as implant materials is elaborated by mechanical and biological characterization. The properties of dense specimens manufactured in different build orientations and of open porous Ti–20Nb–6Ta specimens are evaluated. Compression tests indicate that strength and elasticity are influenced by the chemical composition and build orientation. The minimum elasticity is always observed in the 90° orientation. It is lowest for Ti–20Nb–6Ta (43.2 ± 2.7 GPa) and can be further reduced to 8.1 ± 1.0 GPa for open porous specimens (p < 0.001). Furthermore, human osteoblasts are cultivated for 7 and 14 days on as-printed specimens and their biological response is compared to that of Ti–6Al–4V. Build orientation and cultivation time significantly affect the gene expression profile of osteogenic differentiation markers. Incomplete cell spreading is observed in specimens manufactured in 0° build orientation, whereas widely stretched cells are observed in 90° build orientation, i.e., parallel to the build direction. Compared to Ti–6Al–4V, Ti–Nb–Ta specimens promote improved osteogenesis and reduce the induction of inflammation. Accordingly, Ti–xNb–6Ta alloys have favorable mechanical and biological properties with great potential for application in orthopedic implants

    A mild case of molybdenum cofactor deficiency defines an alternative route of MOCS1 protein maturation

    No full text
    Molybdenum cofactor deficiency is an autosomal recessive inborn error of metabolism, which results from mutations in genes involved in Moco biosynthesis. Moco serves as a cofactor of several enzymes, including sulfite oxidase. MoCD is clinically characterized by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases. Here we report a patient with an unusual late disease onset and mild phenotype, characterized by a lack of seizures, normal early development, a decline triggered by febrile illness and a subsequent dystonic movement disorder. Genetic analysis revealed a homozygous c.1338delG MOCS1 mutation causing a frameshift (p.S442fs) with a premature termination of the MOCS1AB translation product at position 477 lacking the entire MOCS1B domain. Surprisingly, urine analysis detected trace amounts (1% of control) of the Moco degradation product urothione, suggesting a residual Moco synthesis in the patient, which was consistent with the mild clinical presentation. Therefore, we performed bioinformatic analysis of the patient's mutated MOCS1 transcript and found a potential Kozak-sequence downstream of the mutation site providing the possibility of an independent expression of a MOCS1B protein. Following the expression of the patient's MOCS1 cDNA in HEK293 cells we detected two proteins: a truncated MOCS1AB protein and a 22.4 kDa protein representing MOCS1B. Functional studies of both proteins confirmed activity of MOCS1B, but not of the truncated MOCS1AB. This finding demonstrates an unusual mechanism of translation re-initiation in the MOCS1 transcript, which results in trace amounts of functional MOCS1B protein being sufficient to partially protect the patient from the most severe symptoms of MoCD

    A Common Mutation Is Associated with a Mild, Potentially Asymptomatic Phenotype in Patients with Isovaleric Acidemia Diagnosed by Newborn Screening

    Get PDF
    Isovaleric acidemia (IVA) is an inborn error of leucine metabolism that can cause significant morbidity and mortality. Since the implementation, in many states and countries, of newborn screening (NBS) by tandem mass spectrometry, IVA can now be diagnosed presymptomatically. Molecular genetic analysis of the IVD gene for 19 subjects whose condition was detected through NBS led to the identification of one recurring mutation, 932C→T (A282V), in 47% of mutant alleles. Surprisingly, family studies identified six healthy older siblings with identical genotype and biochemical evidence of IVA. Our findings indicate the frequent occurrence of a novel mild and potentially asymptomatic phenotype of IVA. This has significant consequences for patient management and counseling

    Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency reveals large intragenic rearrangements of DPYD and a de novo interstitial deletion del(1)(p13.3p21.3)

    Get PDF
    Dihydropyrimidine dehydrogenase (DPD) deficiency is an infrequently described autosomal recessive disorder of the pyrimidine degradation pathway and can lead to mental and motor retardation and convulsions. DPD deficiency is also known to cause a potentially lethal toxicity following administration of the antineoplastic agent 5-fluorouracil. In an ongoing study of 72 DPD deficient patients, we analysed the molecular background of 5 patients in more detail in whom initial sequence analysis did not reveal pathogenic mutations. In three patients, a 13.8 kb deletion of exon 12 was found and in one patient a 122 kb deletion of exon 14-16 of DPYD. In the fifth patient, a c.299_302delTCAT mutation in exon 4 was found and also loss of heterozygosity of the entire DPD gene. Further analysis demonstrated a de novo deletion of approximately 14 Mb of chromosome 1p13.3-1p21.3, which includes DPYD. Haploinsufficiency of NTNG1, LPPR4, GPSM2, COL11A1 and VAV3 might have contributed to the severe psychomotor retardation and unusual craniofacial features in this patient. Our study showed for the first time the presence of genomic deletions affecting DPYD in 7% (5/72) of all DPD deficient patients. Therefore, screening of DPD deficient patients for genomic deletions should be considered

    Propionic acidemia: clinical course and outcome in 55 pediatric and adolescent patients

    Get PDF
    BACKGROUND: Propionic acidemia is an inherited disorder caused by deficiency of propionyl-CoA carboxylase. Although it is one of the most frequent organic acidurias, information on the outcome of affected individuals is still limited. STUDY DESIGN/METHODS: Clinical and outcome data of 55 patients with propionic acidemia from 16 European metabolic centers were evaluated retrospectively. 35 patients were diagnosed by selective metabolic screening while 20 patients were identified by newborn screening. Endocrine parameters and bone age were evaluated. In addition, IQ testing was performed and the patients' and their families' quality of life was assessed. RESULTS: The vast majority of patients (>85%) presented with metabolic decompensation in the neonatal period. Asymptomatic individuals were the exception. About three quarters of the study population was mentally retarded, median IQ was 55. Apart from neurologic symptoms, complications comprised hematologic abnormalities, cardiac diseases, feeding problems and impaired growth. Most patients considered their quality of life high. However, according to the parents' point of view psychic problems were four times more common in propionic acidemia patients than in healthy controls. CONCLUSION: Our data show that the outcome of propionic acidemia is still unfavourable, in spite of improved clinical management. Many patients develop long-term complications affecting different organ systems. Impairment of neurocognitive development is of special concern. Nevertheless, self-assessment of quality of life of the patients and their parents yielded rather positive results
    corecore