54 research outputs found
Determination of Absolute Gravity at BPRC/US Polar Rock Repository
We determined absolute gravity at a base station located in the north-east corner of the U.S. Polar Rock Repository based on two field surveys conducted in summer 2005. We used a CG-5 Scintrex Autograv System for our measurements. The meter can measure relative gravity to a precision of 0.001 mGal. To find the absolute gravity we visited three tie-point sites, one located at the OSU Main Library, one in downtown Columbus and one south-west of town near Bolton Airfield. The sites were set up by the NOAA and NGS and absolute gravity was determined using a relative gravimeter (Lacoste-Romberg) which in turn was tied back to a site of known gravity. An absolute gravity measurement was conducted by NOAA-NGS in summer 2005 at OSU, in Mendenhall Laboratory. At each of the sites, we recorded a series of gravity measurements. These were subsequently used to calculate absolute gravity at the rock repository base station where measurements were taken at the start and end of the survey. We found the absolute gravity at the base station to be 980082.070 mGal with an error of about 0.035 mGal. This report is a summary of this investigation
Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice-shelf geometry
Despite the potentially detrimental impact of large-scale calving events on the geometry and ice flow of the Antarctic Ice Sheet, little is known about the processes that drive rift formation prior to calving, or what controls the timing of these events. The Brunt Ice Shelf in East Antarctica presents a rare natural laboratory to study these processes, following the recent formation of two rifts, each now exceeding 50 km in length. Here we use a unique 50-years' time series of in-situ and remote sensing observations, together with numerical modelling, to reveal how slow changes in ice shelf geometry over time caused build-up of mechanical tension far upstream of the ice front, and culminated in rift formation and a significant speed-up of the ice shelf. These internal feedbacks, whereby ice shelves generate the very conditions that lead to their own (partial) disintegration are currently missing from ice flow models, which severely limits their ability to accurately predict future sea level rise
Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica
We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day−1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica
Impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers
ARISING FROM P. A. Tuckett et al., Nature Communications https://doi.org/10.1038/s41467-019-12039-2 (2019)
Three different glacier surges at a spot: what satellites observe and what not
In the Karakoram, dozens of glacier surges occurred in the past 2 decades, making the region a global hotspot. Detailed analyses of dense time series from optical and radar satellite images revealed a wide range of surge behaviour in this region: from slow advances longer than a decade at low flow velocities to short, pulse-like advances over 1 or 2 years with high velocities. In this study, we present an analysis of three currently surging glaciers in the central Karakoram: North and South Chongtar Glaciers and an unnamed glacier referred to as NN9. All three glaciers flow towards the same small region but differ strongly in surge behaviour. A full suite of satellites (e.g. Landsat, Sentinel-1 and 2, Planet, TerraSAR-X, ICESat-2) and digital elevation models (DEMs) from different sources (e.g. Shuttle Radar Topography Mission, SRTM; Satellite Pour l’Observation de la Terre, SPOT; High Mountain Asia DEM, HMA DEM) are used to (a) obtain comprehensive information about the evolution of the surges from 2000 to 2021 and (b) to compare and evaluate capabilities and limitations of the different satellite sensors for monitoring surges of relatively small glaciers in steep terrain. A strongly contrasting evolution of advance rates and flow velocities is found, though the elevation change pattern is more similar. For example, South Chongtar Glacier had short-lived advance rates above 10 km yr−1, velocities up to 30 m d−1, and surface elevations increasing by 170 m. In contrast, the neighbouring and 3-times-smaller North Chongtar Glacier had a slow and near-linear increase in advance rates (up to 500 m yr−1), flow velocities below 1 m d−1 and elevation increases up to 100 m. The even smaller glacier NN9 changed from a slow advance to a full surge within a year, reaching advance rates higher than 1 km yr−1. It seems that, despite a similar climatic setting, different surge mechanisms are at play, and a transition from one mechanism to another can occur during a single surge. The sensor inter-comparison revealed a high agreement across sensors for deriving flow velocities, but limitations are found on small and narrow glaciers in steep terrain, in particular for Sentinel-1. All investigated DEMs have the required accuracy to clearly show the volume changes during the surges, and elevations from ICESat-2 ATL03 data fit neatly to the other DEMs. We conclude that the available satellite data allow for a comprehensive observation of glacier surges from space when combining different sensors to determine the temporal evolution of length, elevation and velocity changes
Sub-Annual Calving Front Migration, Area Change and Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice Shelf, Antarctica
Mapping the time-variable calving front location (CFL) of Antarctic ice shelves is important for estimating the freshwater budget, as an indicator of changing ocean and structural conditions or as a precursor of dynamic instability. Here, we present a novel approach for deriving regular and consistent CFLs based on CryoSat-2 swath altimetry. The CFL detection is based on the premise that the shelf edge is usually characterized by a steep ice cliff, which is clearly resolved in the surface elevation data. Our method applies edge detection and vectorization of the sharp ice edge in gridded elevation data to generate vector shapefiles of the calving front. To show the feasibility of our approach, we derived a unique data set of ice-front positions for the Filchner-Ronne Ice Shelf (FRIS) between 2011 and 2018 at a 200 m spatial resolution and biannual temporal frequency. The observed CFLs compare well with independently derived ice front positions from Sentinel-1 Synthetic Aperture Radar imagery and are used to calculate area change, advance rates, and iceberg calving rates. We measure an area increase of 810 ± 40 km2 a−1 for FRIS and calving rates of 9 ± 1 Gt a−1 and 7 ± 1 Gt a−1 for the Filchner and Ronne Ice Shelves, respectively, which is an order of magnitude smaller than their steady-state calving flux. Our findings demonstrate that the “elevation-edge” method is complementary to standard CFL detection techniques. Although at a reduced spatial resolution and less suitable for smaller glaciers in steep terrain, it enables to provide CFLs at regular intervals and to fill existing gaps in time and space. Moreover, the method simultaneously provides ice thickness, required for mass budget calculation, and has a degree of automation which removes the need for heavy manual intervention. In the future, altimetry data has the potential to deliver a systematic and continuous record of change in ice shelf calving front positions around Antarctica. This will greatly benefit the investigation of environmental forcing on ice flow and terminus dynamics by providing a valuable climate data record and improving our knowledge of the constraints for calving models and ice shelf freshwater budget
Ocean warming drives rapid dynamic activation of a marine-terminating glacier on the west Antarctic Peninsula
Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability
Increased ice flow in Western Palmer Land linked to ocean melting
A decrease in the mass and volume of Western Palmer Land has raised the prospect that ice speed has increased in this marine-based sector of Antarctica. To assess this possibility, we measure ice velocity over 25 years using satellite imagery and an optimized modeling approach. More than 30 unnamed outlet glaciers drain the 800 km coastline of Western Palmer Land at speeds ranging from 0.5 to 2.5 m/d, interspersed with near-stagnant ice. Between 1992 and 2015, most of the outlet glaciers sped up by 0.2 to 0.3 m/d, leading to a 13% increase in ice flow and a 15 km3/yr increase in ice discharge across the sector as a whole. Speedup is greatest where glaciers are grounded more than 300 m below sea level, consistent with a loss of buttressing caused by ice shelf thinning in a region of shoaling warm circumpolar water
- …