54 research outputs found

    Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony

    Get PDF
    Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services

    Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view

    Get PDF
    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively

    Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island

    Get PDF
    Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo

    Neue Wohnungsgemeinnützigkeit (NWG)

    No full text

    Variability of plant functional traits at Ohrazeni meadow experiment

    No full text
    Trait values of plant individuals sampled in eight different treatments of the meadow experiment

    Data from: Variation in plant functional traits is best explained by the species identity: stability of trait based species ranking across meadow management regimes

    No full text
    1. It is commonly assumed in trait-based studies that plant functional traits are species-specific, being more variable among species than among different environmental conditions. If the environment affects traits it is assumed that species react in a similar direction and conserve the functional distances. The rank of species based on the trait values is then unchanged, which justifies the use of species trait averages from database values. Such assumptions of species specificity are, however, increasingly disputed by studies showing overall high intraspecific trait variability. 2. To test the species specificity and ranking stability of functional traits we sampled plant individuals of almost all species (66 in total) within each plot of a long term (19 years) land use management experiment, which comprised a factorial combination of fertilization, mowing and removal of the dominant species Molinia caerulea in an oligotrophic wet meadow in the Czech Republic. Plant individuals were measured for eight commonly used traits: height, leaf dry matter content (LDMC), specific leaf area (SLA), leaf δ13C content, leaf carbon content, leaf δ15N content, and leaf nitrogen content. Height, LDMC, and SLA were also extracted from the LEDA trait database for comparison. 3. Species identity consistently explained the largest portion of trait variability (40%-68%). Land use managements had a considerably lower effect (0.4%-9% of explained trait variability for individual traits). The species trait averages computed for each land use management regime separately were mutually correlated, showing the stable trait-based species ranking. Ranking stability of species trait averages was observed despite land use management changing absolute trait values and despite the tremendous intraspecific trait variability (causing substantial overlap of trait values for different species). For all treatments our measured species averages for LDMC and SLA were also stably ranked with species averages from the LEDA database. 4. Synthesis. Our results showed that species conserve the functional distances in different environmental conditions from where they were measured. Species trait averages can describe general trends in functional composition, although averaging reduces the ecologically interesting information of the intraspecific trait variability

    Data from: Seasonality promotes grassland diversity: interactions with mowing, fertilization and removal of dominant species

    No full text
    1. Current biodiversity declines in species-rich grasslands are connected with the cessation of management, eutrophication and the expansion of dominant grass species. One of the theoretical mechanisms limiting biodiversity loss is the ability of subordinate species to avoid competitive exclusion by seasonal niche separation from dominant species. Here we explore how seasonality underpins the maintenance of diversity in temperate meadows under different management regimes and competition intensities in relation to species functional traits. 2. We studied eight different communities in a long-term meadow experiment that manipulated mowing, fertilization and dominant species (Molinia caerulea) removal. In each community, species-specific trait and biomass data were taken five times during the year to test whether seasonal variation in species composition and functional strategies enable species to coexist. 3. Mown unfertlized meadows exhibited pronounced seasonal variations in community composition and structure, linked to differences in resource-use strategies between mid-summer dominants and the spring and autumn subordinates. Higher specific leaf area and foliar nitrogen concentration in the fast-growing dominants, and increased water use (δ13C) and nutrient acquisition (δ15N) efficiency in resource-retentive subordinates, best predicted their temporal niche separation. Seasonal segregation of species with contrasting strategies increased after mowing cessation, and the resulting summer dominance of Molinia. Conversely, the seasonal dynamics were markedly reduced by fertilization, promoting tall grasses over sedges and forbs throughout the entire year, thereby decreasing the overall taxonomic and functional diversity. When Molinia was removed the compositional changes during the season became less pronounced, being significant only in mown unfertilized plots. 4. Seasonal shifts in community composition reduced the competitive interactions and promoted the coexistence of dominant and subordinate species. Seasonality reversed the negative mid-summer diversity-productivity relationship to a positive one during the spring and autumn, and seasonality only prevented diversity loss in unfertilized conditions possibly because competition is most intense in summer. In fertilized meadows, subordinate species are not able to escape competitive exclusion by shifting their phenological peaks to the spring or autumn periods because asymmetric competition is intense over the entire growing season. Studying seasonal dynamics is key to understanding the maintenance of grassland diversity under ongoing land use change
    • …
    corecore