134 research outputs found

    Arterial properties as determinants of left ventricular mass and fibrosis in severe aortic Stenosis : findings from ACRIN PA 4008

    No full text
    Background-The role of arterial load in severe aortic stenosis is increasingly recognized. However, patterns of pulsatile load and their implications in this population are unknown. We aimed to assess the relationship between the arterial properties and both (1) left ventricular remodeling and fibrosis and (2) the clinical course of patients with severe aortic stenosis undergoing aortic valve replacement (AVR). Methods and Results-We enrolled 38 participants with symptomatic severe aortic stenosis scheduled to undergo surgical AVR. Aortic root characteristic impedance, wave reflections parameters (reflection magnitude, reflected wave transit time), and myocardial extracellular mass were measured with cardiac magnetic resonance imaging and arterial tonometry Cardiac magnetic resonance imaging was repeated at 6 months in 30 participants. A reduction in cellular mass (133.6 versus 113.9 g; P=0.002) but not extracellular mass (42.3 versus 40.6 g; P=0.67) was seen after AVR. Participants with higher extracellular mass exhibited greater reflection magnitude (0.68 versus 0.54; P=0.006) and lower aortic root characteristic impedance (56.3 versus 96.9 dynes/s per cm(5); P=0.006). Reflection magnitude was a significant predictor of smaller improvement in the quality of life (Kansas City Cardiomyopathy Questionnaire score) after AVR (R=-0.51; P=0.0026). The 6-minute walk distance at 6 months after AVR was positively correlated with the reflected wave transit time (R=0.52; P=0.01). Conclusions-Consistent with animal studies, arterial wave reflections are associated with interstitial volume expansion in severe aortic stenosis and predict a smaller improvement in quality of life following AVR. Future trials should assess whether wave reflections represent a potential therapeutic target to mitigate myocardial interstitial remodeling and to improve the clinical status of this patient population

    Expert elicitation to inform a cost effectiveness analysis of screening for renal cancer: methodological and practical considerations

    Get PDF
    Background: Population screening for renal cell carcinoma (RCC) using ultrasound has the potential to improve survival outcomes; however a cost-effectiveness analysis (CEA) has yet to be performed. Due to the lack of existing evidence, we performed structured expert elicitation to derive unknown quantities to inform the CEA. Objectives: To elicit the cancer stage distribution (proportion of individuals with each stage of cancer) for different RCC screening scenarios and the annual transition probabilities for undiagnosed disease becoming diagnosed in the NHS. Methods: The study design and reporting adhered to the Reporting Guidelines for the Use of Expert Judgement in Model-Based Economic Evaluations. The elicitation was conducted face-to-face or via telephone between each individual expert and the facilitator, aided by online material. For multinomial data, Connor Mosimann and modified Connor Mosimann distributions were fitted for each expert and for all experts combined using mathematical linear pooling. Results: A total of 24 clinical experts were invited, and 71% participated (7 urologists, 6 oncologists, 4 radiologists). The modified Connor Mosimann distribution provided the best fit for the majority of elicited quantities. Greater uncertainty was noted for the elicited transition probabilities compared to the elicited stage distributions. Conclusion: We performed the first expert elicitation of RCC screening parameters, crucial information which will inform the CEA of screening. Additionally, the elicited quantities may enable future health economic evaluations assessing the value of diagnostic tools and pathways in RCC

    Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors.</p> <p>Methods</p> <p>Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5) were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months.</p> <p>Results</p> <p>Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease.</p> <p>Conclusion</p> <p>Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.</p

    Myocardial Fat Imaging

    Get PDF
    The presence of intramyocardial fat may form a substrate for arrhythmias, and fibrofatty infiltration of the myocardium has been shown to be associated with sudden death. Therefore, noninvasive detection could have high prognostic value. Fat-water–separated imaging in the heart by MRI is a sensitive means of detecting intramyocardial fat and characterizing fibrofatty infiltration. It is also useful in characterizing fatty tumors and delineating epicardial and/or pericardial fat. Multi-echo methods for fat and water separation provide a sensitive means of detecting small concentrations of fat with positive contrast and have a number of advantages over conventional chemical-shift fat suppression. Furthermore, fat and water–separated imaging is useful in resolving artifacts that may arise due to the presence of fat. Examples of fat-water–separated imaging of the heart are presented for patients with ischemic and nonischemic cardiomyopathies, as well as general tissue classification

    Discrepancy between radiological and pathological size of renal masses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor size is a critical variable in staging for renal cell carcinoma. Clinicians rely on radiological estimates of pathological tumor size to guide patient counseling regarding prognosis, choice of treatment strategy and entry into clinical trials. If there is a discrepancy between radiological and pathological measurements of renal tumor size, this could have implications for clinical practice. Our study aimed to compare the radiological size of solid renal tumors on computed tomography (CT) to the pathological size in an Australian population.</p> <p>Methods</p> <p>We identified 157 patients in the Westmead Renal Tumor Database, for whom data was available for both radiological tumor size on CT and pathological tumor size. The paired Student's <it>t</it>-test was used to compare the mean radiological tumor size and the mean pathological tumor size. Statistical significance was defined as <it>P </it>< 0.05. We also identified all cases in which post-operative down-staging or up-staging occurred due to discrepancy between radiological and pathological tumor sizes. Additionally, we examined the relationship between Fuhrman grade and radiological tumor size and pathological T stage.</p> <p>Results</p> <p>Overall, the mean radiological tumor size on CT was 58.3 mm and the mean pathological size was 55.2 mm. On average, CT overestimated pathological size by 3.1 mm (<it>P </it>= 0.012). CT overestimated pathological tumor size in 92 (58.6%) patients, underestimated in 44 (28.0%) patients and equaled pathological size in 21 (31.4%) patients. Among the 122 patients with pT1 or pT2 tumors, there was a discrepancy between clinical and pathological staging in 35 (29%) patients. Of these, 21 (17%) patients were down-staged post-operatively and 14 (11.5%) were up-staged. Fuhrman grade correlated positively with radiological tumor size (<it>P </it>= 0.039) and pathological tumor stage (<it>P </it>= 0.003).</p> <p>Conclusions</p> <p>There was a statistically significant but small difference (3.1 mm) between mean radiological and mean pathological tumor size, but this is of uncertain clinical significance. For some patients, the difference leads to a discrepancy between clinical and pathological staging, which may have implications for pre-operative patient counseling regarding prognosis and management.</p

    Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    Get PDF
    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs

    Quadricuspid Pulmonic Valve, Pulmonary Artery Aneurysm, and Apical Hypertrophic Cardiomyopathy

    No full text
    • …
    corecore