28 research outputs found

    Changing planetary rotation rescues the biological clock mutant lhy cca1 of Arabidopsis thaliana

    Get PDF
    Author contributions. AJM and SKH designed the study. JC and WVT performed experiments and analysed data under supervision of SKH. AJM performed additional analysis and wrote the paper. Acknowledgements. We are grateful to Kieron Edwards and Adrian Thomson for performing the experiments shown in Figure 3, to Tomasz Zielinski for the online BioDare resource and to members of the Millar laboratory for data curation in BioDare.Background: Pervasive, 24-hour rhythms from the biological clock affect diverse biological processes in metabolism and behaviour, including the human cell division cycle and sleep-wake cycle, nightly transpiration and energy balance in plants, and seasonal breeding in both plants and animals. The clock mechanism in the laboratory model plant species Arabidopsis thaliana is complex, in part due to the multiple interlocking, negative feedback loops that link the clock genes. Clock gene mutants are powerful tools to manipulate and understand the clock mechanism and its effects on physiology. The LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK ASSOCIATED 1 genes encode dawn-expressed, Myb-related repressor proteins that delay the expression of other clock genes until late in the day. Double mutant plants (lhy cca1) have low-amplitude, short-period rhythms that have been used in multiple studies of the plant circadian clock. Results: We used in vivo imaging of several luciferase (LUC) reporter genes to test how the rhythmic gene expression of wild-type and lhy cca1 mutant plants responded to light:dark cycles. Red, blue and red+blue light were similarly able to entrain these gene expression rhythms. The timing of expression rhythms in double mutant plants showed little or no response to the duration of light under 24h light:dark cycles (dusk sensitivity), in contrast to the wild type. As the period of the mutant clock is about 18h, we tested light:dark cycles of different duration (T cycles), simulating altered rotation of planet Earth. lhy cca1 double mutants regained as much dusk sensitivity in 20h T cycles as the wild type in 24h cycles, though the phase of the rhythm in the mutants was much earlier than wild type. The severe, triple lhy cca1 gi mutants also regained dusk sensitivity in 20h cycles. The double mutant showed some dusk sensitivity under 28h cycles. lhy cca1 double mutants under 28h cycles with short photoperiods, however, had the same apparent phase as wild-type plants. Conclusion: Simulating altered planetary rotation with light:dark cycles can reveal normal circadian performance in clock mutants that have been described as arrhythmic under standard conditions. The features rescued here comprise a dynamic behaviour (apparent phase under 28h cycles) and a dynamic property (dusk sensitivity under 20h cycles). These conditional clock phenotypes indicate that parts of the clock mechanism continue to function independently of LHY and CCA1, despite the major role of these genes in wild-type plants under standard conditions. Accessibility: Most results here will be published only in this format, citable by the DOI. Data and analysis are publicly accessible on the BioDare resource (www.biodare.ed.ac.uk), as detailed in the links below. Transgenic lines are linked to Stock Centre IDs below (Table 7)

    Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells

    Get PDF
    To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are “licensed” by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin—a “double fork stall” (DFS)—replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle

    Selected Toll-like Receptor Ligands and Viruses Promote Helper-Independent Cytotoxic T Cell Priming by Upregulating CD40L on Dendritic Cells

    Get PDF
    SummaryCD40L (CD154) on CD4+ T cells has been shown to license dendritic cells (DCs) via CD40 to prime cytotoxic T lymphocyte (CTL) responses. We found that the converse (CD40L on DCs) was also important. Anti-CD40L treatment decreased endogenous CTL responses to both ovalbumin and influenza infection even in the absence of CD4+ T cells. DCs expressed CD40L upon stimulation with agonists to Toll-like receptor 3 (TLR3) and TLR9. Moreover, influenza infection, which stimulates CTLs without help, upregulated CD40L on DCs, but herpes simplex infection, which elicits CTLs through help, did not. CD40L-deficient (Cd40lg−/−) DCs are suboptimal both in vivo in bone marrow chimera experiments and in vitro in mixed lymphocyte reactions. In contrast, Cd40lg−/− CD8+ T cells killed as effectively as wild-type cells. Thus, CD40L upregulation on DCs promoted optimal priming of CD8+ T cells without CD4+ T cells, providing a mechanism by which pathogens may elicit helper-independent CTL immunity

    The Expanded Kinesin-13 Repertoire of Trypanosomes Contains Only One Mitotic Kinesin Indicating Multiple Extra-Nuclear Roles

    Get PDF
    BACKGROUND: Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. METHODOLOGY/PRINCIPAL FINDINGS: The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. CONCLUSIONS/SIGNIFICANCE: These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape

    Get PDF
    Major histocompatibility complex class I (MHC-I) molecules play a crucial role in immunity by capturing peptides for presentation to T cells and natural killer (NK) cells. The peptide termini are tethered within the MHC-I antigen-binding groove, but it is unknown whether other presentation modes occur. Here we show that 20% of the HLA-B*57:01 peptide repertoire comprises N-terminally extended sets characterized by a common motif at position 1 (P1) to P2. Structures of HLA-B*57:01 presenting N-terminally extended peptides, including the immunodominant HIV-1 Gag epitope TW10 (TSTLQEQIGW), showed that the N terminus protrudes from the peptide-binding groove. The common escape mutant TSNLQEQIGW bound HLA-B*57:01 canonically, adopting a dramatically different conformation than the TW10 peptide. This affected recognition by killer cell immunoglobulin-like receptor (KIR) 3DL1 expressed on NK cells. We thus define a previously uncharacterized feature of the human leukocyte antigen class I (HLA-I) immunopeptidome that has implications for viral immune escape. We further suggest that recognition of the HLA-B*57:01-TW10 epitope is governed by a 'molecular tension' between the adaptive and innate immune systems

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    Data sets for Millar et al. bioRxiv 2015

    No full text
    Provides URLs to the Data for Millar et al. bioRxiv 2015 article entitled, "Changing planetary rotation rescues the biological clock mutant lhy cca1 of Arabidopsis thaliana"Background: Pervasive, 24-hour rhythms from the biological clock affect diverse biological processes in metabolism and behaviour, including the human cell division cycle and sleep-wake cycle, nightly transpiration and energy balance in plants, and seasonal breeding in both plants and animals. The clock mechanism in the laboratory model plant species Arabidopsis thaliana is complex, in part due to the multiple interlocking, negative feedback loops that link the clock genes. Clock gene mutants are powerful tools to manipulate and understand the clock mechanism and its effects on physiology. The LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK ASSOCIATED 1 genes encode dawn-expressed, Myb-related repressor proteins that delay the expression of other clock genes until late in the day. Double mutant plants (lhy cca1) have low-amplitude, short-period rhythms that have been used in multiple studies of the plant circadian clock. Results: We used in vivo imaging of several luciferase (LUC) reporter genes to test how the rhythmic gene expression of wild-type and lhy cca1 mutant plants responded to light:dark cycles. Red, blue and red+blue light were similarly able to entrain these gene expression rhythms. The timing of expression rhythms in double mutant plants showed little or no response to the duration of light under 24h light:dark cycles (dusk sensitivity), in contrast to the wild type. As the period of the mutant clock is about 18h, we tested light:dark cycles of different duration (T cycles), simulating altered rotation of planet Earth. lhy cca1 double mutants regained as much dusk sensitivity in 20h T cycles as the wild type in 24h cycles, though the phase of the rhythm in the mutants was much earlier than wild type. The severe, triple lhy cca1 gi mutants also regained dusk sensitivity in 20h cycles. The double mutant showed some dusk sensitivity under 28h cycles. lhy cca1 double mutants under 28h cycles with short photoperiods, however, had the same apparent phase as wild-type plants. Conclusion: Simulating altered planetary rotation with light:dark cycles can reveal normal circadian performance in clock mutants that have been described as arrhythmic under standard conditions. The features rescued here comprise a dynamic behaviour (apparent phase under 28h cycles) and a dynamic property (dusk sensitivity under 20h cycles). These conditional clock phenotypes indicate that parts of the clock mechanism continue to function independently of LHY and CCA1, despite the major role of these genes in wild-type plants under standard conditions. Accessibility: Most results here will be published only in this format, citable by the DOI. Data and analysis are publicly accessible on the BioDare resource (www.biodare.ed.ac.uk), as detailed in the links below. Transgenic lines are linked to Stock Centre IDs below (Table 7).Citations are detailed for each URL listed below

    Sequence variations in HIV-1 p24 Gag-derived epitopes can alter binding of KIR2DL2 to HLA-C*03:04 and modulate primary natural killer cell function

    No full text
    The aim of this study was to assess the consequence of sequence variations in HLA-C03:04-presented HIV-1 p24 Gag epitopes on binding of the inhibitory natural killer (NK) cell receptor KIR2DL2 to HLA-C03:04. HIV-1 may possibly evade recognition by KIR+ NK cells through selection of sequence variants that interfere with the interactions of inhibitory killer cell immunoglobulin-like receptors (KIRs) and their target ligands on HIV-1 infected cells. KIR2DL2 is an inhibitory NK cell receptor that binds to a family of HLA-C ligands. Here, we investigated whether HIV-1 encodes for HLA-C03:04-restricted epitopes that alter KIR2DL2 binding. Tapasin-deficient 721.220 cells expressing HLA-C03:04 were pulsed with overlapping peptides (10mers overlapped by nine amino acids, spanning the entire HIV-1 p24 Gag sequence) to identify peptides that stabilized HLA-C expression. The impact that sequence variation in HLA-C03:04-binding HIV-1 epitopes has on KIR2DL2 binding and KIR2DL2+ NK cell function was determined using KIR2DL2-Fc constructs and NK cell degranulation assays. Several novel HLA-C03:04 binding epitopes were identified within the HIV-1 p24 Gag consensus sequence. Three of these consensus sequence peptides (Gag144-152, Gag163-171 and Gag295-304) enabled binding of KIR2DL2 to HLA-C03:04 and resulted in inhibition of KIR2DL2+ primary NK cells. Furthermore, naturally occurring minor variants of epitope Gag295-304 enhanced KIR2DL2 binding to HLA-C03:04. Our data show that naturally occurring sequence variations within HLA-C03:04-restricted HIV-1 p24 Gag epitopes can have a significant impact on the binding of inhibitory KIR receptors and primary NK cell functio
    corecore