288 research outputs found

    Perceived Utility of Intracranial Pressure Monitoring in Traumatic Brain Injury: A Seattle International Brain Injury Consensus Conference Consensus-Based Analysis and Recommendations

    Get PDF
    Intracranial pressure; Brain injury; ConsensusPresión intracraneal; Lesión cerebral; ConsensoPressió intracranial; Lesió cerebral; ConsensBACKGROUND: Intracranial pressure (ICP) monitoring is widely practiced, but the indications are incompletely developed, and guidelines are poorly followed. OBJECTIVE: To study the monitoring practices of an established expert panel (the clinical working group from the Seattle International Brain Injury Consensus Conference effort) to examine the match between monitoring guidelines and their clinical decision-making and offer guidance for clinicians considering monitor insertion. METHODS: We polled the 42 Seattle International Brain Injury Consensus Conference panel members' ICP monitoring decisions for virtual patients, using matrices of presenting signs (Glasgow Coma Scale [GCS] total or GCS motor, pupillary examination, and computed tomography diagnosis). Monitor insertion decisions were yes, no, or unsure (traffic light approach). We analyzed their responses for weighting of the presenting signs in decision-making using univariate regression. RESULTS: Heatmaps constructed from the choices of 41 panel members revealed wider ICP monitor use than predicted by guidelines. Clinical examination (GCS) was by far the most important characteristic and differed from guidelines in being nonlinear. The modified Marshall computed tomography classification was second and pupils third. We constructed a heatmap and listed the main clinical determinants representing 80% ICP monitor insertion consensus for our recommendations. CONCLUSION: Candidacy for ICP monitoring exceeds published indicators for monitor insertion, suggesting the clinical perception that the value of ICP data is greater than simply detecting and monitoring severe intracranial hypertension. Monitor insertion heatmaps are offered as potential guidance for ICP monitor insertion and to stimulate research into what actually drives monitor insertion in unconstrained, real-world conditions

    A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC)

    Get PDF
    Brain injury; Head trauma; AlgorithmDaño cerebral; Trauma en la cabeza; AlgoritmoLesió cerebral; Trauma al cap; AlgoritmeBackground: Management algorithms for adult severe traumatic brain injury (sTBI) were omitted in later editions of the Brain Trauma Foundation’s sTBI Management Guidelines, as they were not evidence-based. Methods: We used a Delphi-method-based consensus approach to address management of sTBI patients undergoing intracranial pressure (ICP) monitoring. Forty-two experienced, clinically active sTBI specialists from six continents comprised the panel. Eight surveys iterated queries and comments. An in-person meeting included whole- and small-group discussions and blinded voting. Consensus required 80% agreement. We developed heatmaps based on a traffic-light model where panelists’ decision tendencies were the focus of recommendations. Results: We provide comprehensive algorithms for ICP-monitor-based adult sTBI management. Consensus established 18 interventions as fundamental and ten treatments not to be used. We provide a three-tier algorithm for treating elevated ICP. Treatments within a tier are considered empirically equivalent. Higher tiers involve higher risk therapies. Tiers 1, 2, and 3 include 10, 4, and 3 interventions, respectively. We include inter-tier considerations, and recommendations for critical neuroworsening to assist the recognition and treatment of declining patients. Novel elements include guidance for autoregulation-based ICP treatment based on MAP Challenge results, and two heatmaps to guide (1) ICP-monitor removal and (2) consideration of sedation holidays for neurological examination. Conclusions: Our modern and comprehensive sTBI-management protocol is designed to assist clinicians managing sTBI patients monitored with ICP-monitors alone. Consensus-based (class III evidence), it provides management recommendations based on combined expert opinion. It reflects neither a standard-of-care nor a substitute for thoughtful individualized management.We thank our financial supporters who include Adler/Geirsch Attorney at Law, the American Association of Neurological Surgeons/Congress of Neurological Surgeons Section on Neurotrauma and Critical Care, Bard, the Brain Trauma Foundation, DePuy, Hemedex, Integra, the Neurointensive Care Section of the European Society of Intensive Care Medicine, Neurosurgical Society of Australasia, Medtronic, Moberg Research, Natus, Neuroptics, Raumedic, Sophysa, Stryker, and Zoll

    The impact of conjunctival flap method and drainage cannula diameter on bleb survival in the rabbit model

    Get PDF
    Purpose To examine the effect of cannula diameter and conjunctival flap method on bleb survival in rabbits undergoing cannula-based glaucoma filtration surgery (GFS). Methods Twelve New Zealand White rabbits underwent GFS in both eyes. The twenty-four eyes were divided into four groups. Two of the four groups (N = 12) received limbus-based con- junctival flaps (LBCF), and the other two (N = 12) received fornix-based conjunctival flaps (FBCF). Six FBCF rabbit eyes were implanted with 22-gauge drainage tubes, and the other six were implanted with 26-gauge tubes. Likewise, six LBCF rabbits received 22-gauge drainage tubes and six received 26-gauge tubes. Filtration blebs were evaluated every three days by a masked observer. Bleb failure was defined as the primary endpoint in this study and was recorded after two consecutive flat bleb evaluations. Results Group 1 (LBCF, 22- gauge cannula) had a mean bleb survival time (Mean ± SD) of 18.7 ± 2.9 days. Group 2 (LBCF, 26-gauge cannula) also had a mean bleb survival time of 18.7 ± 2.9 days. Group 3 (FBCF, 22-gauge cannula) had a mean bleb survival time of 19.2 ± 3.8 days. Group 4 (FBCF, 26-gauge cannula) had a mean bleb survival time of 19.7 ± 4.1 days. A 2-way analysis of variance showed that neither surgical approach nor cannula gauge made a statistically significant difference in bleb survival time (P = 0.634 and P = 0.874). Additionally, there was no significant interaction between cannula gauge and conjunctival flap approach (P = 0.874), suggesting that there was not a combination of drainage gauge and conjunctival flap method that produced superior bleb survival. Conclusion Limbus and fornix-based conjunctival flaps are equally effective in promoting bleb survival using both 22 and 26-gauge cannulas in the rabbit model. The 26-gauge drainage tube may be preferred because its smaller size facilitates the implantation process, reducing the risk of corneal contact

    Recipient mucosal-associated invariant T cells control GVHD within the colon

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I–like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A–/– and MR1–/– mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A–dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT

    Variability in Serum Sodium Concentration and Prognostic Significance in Severe Traumatic Brain Injury: A Multicenter Observational Study.

    Get PDF
    BACKGROUND/OBJECTIVE: Dysnatremia is common in severe traumatic brain injury (TBI) patients and may contribute to mortality. However, serum sodium variability has not been studied in TBI patients. We hypothesized that such variability would be independently associated with mortality. METHODS: We collected 6-hourly serum sodium levels for the first 7 days of ICU admission from 240 severe TBI patients in 14 neurotrauma ICUs in Europe and Australia. We evaluated the association between daily serum sodium standard deviation (dNaSD), an index of variability, and 28-day mortality. RESULTS: Patients were 46 ± 19 years of age with a median initial GCS of 6 [4-8]. Overall hospital mortality was 28%. Hypernatremia and hyponatremia occurred in 64% and 24% of patients, respectively. Over the first 7 days in ICU, serum sodium standard deviation was 2.8 [2.0-3.9] mmol/L. Maximum daily serum sodium standard deviation (dNaSD) occurred at a median of 2 [1-4] days after admission. There was a significant progressive decrease in dNaSD over the first 7 days (coefficient - 0.15 95% CI [- 0.18 to - 0.12], p < 0.001). After adjusting for baseline TBI severity, diabetes insipidus, the use of osmotherapy, the occurrence of hypernatremia, and hyponatremia and center, dNaSD was significantly independently associated with 28-day mortality (HR 1.27 95% CI (1.01-1.61), p = 0.048). CONCLUSIONS: Our study demonstrates that daily serum sodium variability is an independent predictor of 28-day mortality in severe TBI patients. Further prospective investigations are necessary to confirm the significance of sodium variability in larger cohorts of TBI patients and test whether attenuating such variability confers outcome benefits to such patients

    Early Osmotherapy in Severe Traumatic Brain Injury : An International Multicenter Study

    Get PDF
    The optimal osmotic agent to treat intracranial hypertension in patients with severe traumatic brain injury (TBI) remains uncertain. We aimed to test whether the choice of mannitol or hypertonic saline (HTS) as early (first 96 h) osmotherapy in these patients might be associated with a difference in mortality. We retrospectively analyzed data from 2015 from 14 tertiary intensive care units (ICUs) in Australia, UK, and Europe treating severe TBI patients with intracranial pressure (ICP) monitoring and compared mortality in those who received mannitol only versus HTS only. We performed multi-variable analysis adjusting for site and illness severity (Injury Severity Score, extended IMPACT score, and mean ICP over the first 96 h) using Cox proportional hazards regression. We collected data on 262 patients and compared patients who received early osmotherapy with mannitol alone (n = 46) with those who received HTS alone (n = 46). Mannitol patients were older (median age, 49.2 (19.2) vs. 40.5 (16.8) years; p = 0.02), with higher Injury Severity Scores (42 (15.9) vs. 32.1 [11.3]; p = 0.001), and IMPACT-TBI predicted 6-month mortality (34.5% [23-46] vs. 25% [13-38]; p = 0.02), but had similar APACHE-II scores, and mean and maximum ICPs over the first 96 h. The unadjusted hazard ratio for in-hospital mortality in patients receiving only mannitol was 3.35 (95% confidence interval [CI], 1.60-7.03; p = 0.001). After adjustment for key mortality predictors, the hazard ratio for in-hospital mortality in patients receiving only mannitol was 2.64 (95% CI, 0.96-7.30; p = 0.06). The choice of early osmotherapy in severe TBI patients may affect survival, or simply reflect clinician beliefs about their different roles, and warrants controlled investigation.Peer reviewe

    A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).

    Get PDF
    BACKGROUND: Management algorithms for adult severe traumatic brain injury (sTBI) were omitted in later editions of the Brain Trauma Foundation's sTBI Management Guidelines, as they were not evidence-based. METHODS: We used a Delphi-method-based consensus approach to address management of sTBI patients undergoing intracranial pressure (ICP) monitoring. Forty-two experienced, clinically active sTBI specialists from six continents comprised the panel. Eight surveys iterated queries and comments. An in-person meeting included whole- and small-group discussions and blinded voting. Consensus required 80% agreement. We developed heatmaps based on a traffic-light model where panelists' decision tendencies were the focus of recommendations. RESULTS: We provide comprehensive algorithms for ICP-monitor-based adult sTBI management. Consensus established 18 interventions as fundamental and ten treatments not to be used. We provide a three-tier algorithm for treating elevated ICP. Treatments within a tier are considered empirically equivalent. Higher tiers involve higher risk therapies. Tiers 1, 2, and 3 include 10, 4, and 3 interventions, respectively. We include inter-tier considerations, and recommendations for critical neuroworsening to assist the recognition and treatment of declining patients. Novel elements include guidance for autoregulation-based ICP treatment based on MAP Challenge results, and two heatmaps to guide (1) ICP-monitor removal and (2) consideration of sedation holidays for neurological examination. CONCLUSIONS: Our modern and comprehensive sTBI-management protocol is designed to assist clinicians managing sTBI patients monitored with ICP-monitors alone. Consensus-based (class III evidence), it provides management recommendations based on combined expert opinion. It reflects neither a standard-of-care nor a substitute for thoughtful individualized management

    Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian 4 Birth Cohort 1936

    Get PDF
    Cognitive decline is among the most feared aspects of ageing. We have generated induced pluripotent stem cells (iPSCs) from 24 people from the Lothian Birth Cohort 1936, whose cognitive ability was tested in childhood and in older age. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating oriP/EBNA1 backbone plasmids expressing six iPSC reprogramming factors (OCT3/4 (POU5F1), SOX2, KLF4, L-Myc, shp53, Lin28, SV40LT). All lines demonstrated STR matched karyotype and pluripotency was validated by multiple methods. These iPSC lines are a valuable resource to study molecular mechanisms underlying individual differences in cognitive ageing and resilience to age-related neurodegenerative diseases

    Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis.

    Get PDF
    Monitoring and optimisation of brain tissue oxygen tension (PbtO2) has been associated with improved neurological outcome and survival in observational studies of severe traumatic brain injury (TBI). We carried out a systematic review of randomized controlled trials to determine if PbtO2-guided management is associated with differential neurological outcomes, survival, and adverse events. Searches were carried out to 10 February 2022 in Medline (OvidSP), 11 February in EMBASE (OvidSP) and 8 February in Cochrane library. Randomized controlled trials comparing PbtO2 and ICP-guided management to ICP-guided management alone were included. The primary outcome was survival with favourable neurological outcome at 6-months post injury. Data were extracted by two independent authors and GRADE certainty of evidence assessed. There was no difference in the proportion of patients with favourable neurological outcomes with PbtO2-guided management (relative risk [RR] 1.42, 95% CI 0.97 to 2.08; p = 0.07; I2 = 0%, very low certainty evidence) but PbtO2-guided management was associated with reduced mortality (RR 0.54, 95% CI 0.31 to 0.93; p = 0.03; I2 = 42%; very low certainty evidence) and ICP (mean difference (MD) - 4.62, 95% CI - 8.27 to - 0.98; p = 0.01; I2 = 63%; very low certainty evidence). There was no significant difference in the risk of adverse respiratory or cardiovascular events. PbtO2-guided management in addition to ICP-based care was not significantly associated with increased favourable neurological outcomes, but was associated with increased survival and reduced ICP, with no difference in respiratory or cardiovascular adverse events. However, based on GRADE criteria, the certainty of evidence provided by this meta-analysis was consistently very low. MESH: Brain Ischemia; Intensive Care; Glasgow Outcome Scale; Randomized Controlled Trial; Craniocerebral Trauma
    corecore