118 research outputs found
Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots
Expression of the flagellin receptor FLS2 is regulated in a cell/tissue-specific and stress-induced manner that correlated with sites of bacterial infection. The vasculature expresses FLS2 and responds to flagelli
Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides
Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner
Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides
Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner.</p
Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides
Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner.</p
Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos.
To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.This project received support from the UK Medical Research Council (MRC) (R.E.J. was a clinical research training fellow; additional funding from MR/L009986/1 to N.B. and N.A.H.; and MR/J003352/1 to K.P.H.), the Academy of Medical Sciences (supported by Wellcome Trust, MRC, British Heart Foundation, Arthritis Research UK, the Royal College of Physicians and Diabetes UK) (R.E.J.), the Society for Endocrinology (R.E.J.), the Wellcome Trust (N.A.H. was a senior fellow in clinical science, 088566; additional support from grant 105610/Z/14/Z), and the British Council and JDRF (14BX15NHBG to N.A.H.)
Resonances in an evolving hole in the swash zone
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society of Civil Engineers for personal use, not for redistribution. The definitive version was published in Journal of Waterway, Port, Coastal, and Ocean Engineering 138 (2012): 299–302, doi:10.1061/(ASCE)WW.1943-5460.0000136.Water oscillations observed in a 10-m diameter, 2-m deep hole excavated on the foreshore just above the low-tide line on an ocean beach are consistent with theory. When swashes first filled the initially circular hole on the rising tide, the dominant mode observed in the cross-shore velocity was consistent with a zero-order Bessel function solution (sloshing back and forth). As the tide rose and swash transported sediment, the hole diameter decreased, the water depth inside the hole remained approximately constant, and the frequency of the sloshing mode increased according to theory. About an hour after the swashes first reached the hole, it had evolved from a closed circle to a semi-circle, open to the ocean. When the hole was nearly semi-circular, the observed cross-shore velocity had two spectral peaks, one associated with the sloshing of a closed circle, the other associated with a quarter-wavelength mode in an open semi-circle, both consistent with theory. As the hole evolved further toward a fully semi-circular shape, the circular sloshing mode decreased, while the quarter-wavelength mode became dominant.The Office of Naval Research, a National Security Science and Engineering Faculty Fellowship, a National Science Foundation Career award, and a National Defense Science and Engineering Graduate Fellowship provided support
dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element
It was described earlier that the Drosophila GAGA factor [Trithorax-like (Trl)] interacts with dSAP18, which, in mammals, was reported to be a component of the Sin3–HDAC co-repressor complex. GAGA–dSAP18 interaction was proposed to contribute to the functional regulation of the bithorax complex (BX-C). Here, we show that mutant alleles of Trl, dsap18 and drpd3/hdac1 enhance A6-to-A5 transformation indicating a contribution to the regulation of Abd-B expression at A6. In A6, expression of Abd-B is driven by the iab-6 enhancer, which is insulated from iab-7 by the Fab-7 element. Here, we report that GAGA, dSAP18 and dRPD3/HDAC1 co-localize to ectopic Fab-7 sites in polytene chromosomes and that mutant Trl, dsap18 and drpd3/hdac1 alleles affect Fab-7-dependent silencing. Consistent with these findings, chromatin immunoprecipitation analysis shows that, in Drosophila embryos, the endogenous Fab-7 element is hypoacetylated at histones H3 and H4. These results indicate a contribution of GAGA, dSAP18 and dRPD3/HDAC1 to the regulation of Fab-7 function
Altered urothelial ATP signaling in a major subset of human overactive bladder patients with pyuria
Overactive Bladder (OAB) is an idiopathic condition, characterized by urgency, urinary frequency, and urgency incontinence, in the absence of routinely traceable urinary infection. We have described microscopic pyuria (?10 wbc/?l) in patients suffering from the worst symptoms. It is established that inflammation is associated with increased ATP release from epithelial cells, and extracellular ATP originating from the urothelium following increased hydrostatic pressure is a mediator of bladder sensation. Here, using bladder biopsy samples, we have investigated urothelial ATP signaling in OAB patients with microscopic pyuria. Basal, but not stretch-evoked, release of ATP was significantly greater from the urothelium of OAB patients with pyuria than from non-OAB patients or OAB patients without pyuria (<10 wbc/?l). Basal ATP release from the urothelium of OAB patients with pyuria was inhibited by the P2 receptor antagonist suramin and abolished by the hemichannel blocker carbenoxolone, which differed from stretch-activated ATP release. Altered P2 receptor expression was evident in the urothelium from pyuric OAB patients. Furthermore, intracellular bacteria were visualized in shed urothelial cells from ?80% of OAB patients with pyuria. These data suggest that increased ATP release from the urothelium, involving bacterial colonization, may play a role in the heightened symptoms associated with pyuric OAB patients
- …