17 research outputs found

    A study for systematic errors of the GLA forecast model in tropical regions

    Get PDF
    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system

    Research highlights of the global modeling and simulation branch for 1986-1987

    Get PDF
    This document provides a summary of the research conducted in the Global Modeling and Simulation Branch and highlights the most significant accomplishments in 1986 to 1987. The Branch has been the focal point for global weather and climate prediction research in the Laboratory for Atmospheres through the retrieval and use of satellite data, the development of global models and data assimilation techniques, the simulation of future observing systems, and the performance of atmospheric diagnostic studies

    Stratospheric Data Analysis System (STRATAN)

    Get PDF
    A state of the art stratospheric analyses using a coupled stratosphere/troposphere data assimilation system is produced. These analyses can be applied to stratospheric studies of all types. Of importance to this effort is the application of the Stratospheric Data Analysis System (STRATAN) to constituent transport and chemistry problems

    Into the Facet-Selectivity of Sequenced Amphiphilic Peptoids at the Au-Water Interface

    No full text
    Shape-controlled colloidal nanocrystal syntheses often require aid from facet-selective solution-phase chemical additives to regulate atom addition/migration fluxes or oriented particle attachment. Because of their highly tunable chemical property and robustness to a wide range of experimental conditions, peptoids contribute to a very promising group of next-generation functional chemical additives. To generalize the design philosophy, it is critical to understand the origin of facet selectivity at the molecular level. We employ molecular dynamics simulations and biased sampling methods to investigate the origin of Au(111)-favored adsorption of a peptoid, Nce3Ncp6, that is evidenced to assist the formation of five-fold twinned nanostructures. We find that the facet-selectivity is achieved through a synergistic effect of both molecule-surface and solvent-surface interactions. Extending beyond the single-chain scenario, the order of peptoid-peptoid and peptoid-surface energetics, i.e., peptoid-Au(100) < peptoid-peptoid < peptoid-Au(111), further amplifies the distinct behavior of Nce3Ncp6 chains on different Au surfaces. Our studies set the stage for future peptoid design in shape-controlled nanocrystal syntheses by probing the facet selectivity from various perspectives

    Thermodynamic Analysis of Silk Fibroin–Graphite Hybrid Materials and Their Morphology

    No full text
    Silk fibroin (SF) is a β-sheet-rich protein that is responsible for the remarkable tensile strength of silk. In addition to its mechanical properties, SF is biocompatible and biodegradable, making it an attractive candidate for use in biotic/abiotic hybrid materials. A pairing of particular interest is the use of SF with graphene-based nanomaterials (GBNs). The properties of this interface drive the formation of well-ordered nanostructures and can improve the electronic properties of the resulting hybrid. It was previously demonstrated that SF can form lamellar nanostructures in the presence of graphite; however, the equilibrium morphology and associated driving interactions are not fully understood. In this study, we characterize these interactions between SF and SF lamellar with graphite using molecular dynamics (MD) simulations and umbrella sampling (US). We find that SF lamellar nanostructures have strong orientational and spatial preferences on graphite that are driven by the hydrophobic effect, destabilizing solvent–protein interactions and stabilizing protein–protein and protein–graphite interactions. Finally, we show how careful consideration of these underlying interactions can be applied to rationally modify the nanostructure morphology

    Ion-dependent protein–surface interactions from intrinsic solvent response

    No full text
    The phyllosilicate mineral muscovite mica is widely used as a surface template for the patterning of macromolecules, yet a molecular understanding of its surface chemistry under varying solution conditions, required to predict and control the self-assembly of adsorbed species, is lacking. We utilize all-atom molecular dynamics simulations in conjunction with an electrostatic analysis based in local molecular field theory that affords a clean separation of long-range and short-range electrostatics. Using water polarization response as a measure of the electric fields that arise from patterned, surface-bound ions that direct the adsorption of charged macromolecules, we apply a Landau theory of forces induced by asymmetrically polarized surfaces to compute protein-surface interactions for two muscovite-binding proteins (DHR10-mica6 and C98RhuA). Comparison of the pressure between surface and protein in high-concentration KCl and NaCl aqueous solutions reveals ion-specific differences in far-field protein-surface interactions, neatly capturing the ability of ions to modulate the surface charge of muscovite that in turn selectively attracts one binding face of each protein over all others
    corecore