COMMENTARII MATHEMATICI ed. RIKKYO UNIV/MATH
UNIVERSITATIS SANCTI PAULI IKEBUKURO TOKYO
Vol. 32, No. 2, 1983 171 JAPAN

Direct Sums of Cyclic Summands

by

Doyle CUTLER, John IRWIN, James PFAENDTNER
and Tom SNABB

(Received September 13, 1982)

Introduction

By group we will mean Abelian group. Erdos [3] proved that if H is a pure
subgroup of a free group F, then H contains a direct summand K of F such that
r(K)=r(H). In § 1, we will show that if H is a pure subgroup of a direct sum of cyclic
groups, then H contains a direct summand K of F such that the torsion-free rank of
K and H are equal and, for all primes p, both the p-rank and final p-rank of K and H
are equal. In the case that Fis a direct sum of cyclic p-groups, and H= @ {(x) is

xeX
any given decomposition of H, we may choose K to be generated by a subset of X.

Following [1] we call a p-group G, C-decomposable if G has a summand C such
that Cis a direct sum of cyclic groups and fin r,(G) =fin r (C). In § 2, using the results
of §1, we will give another proof [see 6] that p®*!-projective p-groups are C-
decomposable. More generally, we will give another proof of the following [see 1]: Let
G be a p®*"-projective p-group such that G[p"] = S[p"|@® P where S is a pure subgroup
of G, both S and G/P are direct sums of cyclic groups, and the sum is direct as
valuated groups. Then G is C-decomposable.

We will for the most part follow the notation of [2] and [5]. The symbol @, will
denote a direct sum of cyclic groups, and @ denotes a direct sum as valuated p-
groups where the valuation is given by the height function in the obvious containing
group. The torsion-free rank of a group G will be denoted by r,(G) whereas the p-
rank will be denoted by r,(G). Also fin r(G) =inf r(p"G). If the meaning is clear, we
shall drop the subscript. As usual, w is the first infinite ordinal and w*=w— {0}. A
cardinal is the least ordinal of the given cardinality and an ordinal is the set of all
smaller ordinals.

§1. We will first state our main theorem

THEOREM 1. Let F be a direct sum of cyclic groups and H a pure subgroup of F.
Then H contains a summand K of F such that ro(K)=ro(H) and both r(K)=r,(H)and
fin r (K)=fin r (H) for each prime p.

The remainder of this section is devoted to the proof of this theorem.
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We will prove the theorem first for direct sums of cyclic p-groups. The idea of the
proof is as follows. Let H= @ H, be a pure subgroup of F= @ F, where F,

and H, are direct sums of cyclic groups of order p". Then we can find a large enough
'summand of H,[p] contained in @ F,[p] for some m>n. This is the essence of

Lemma 7. Our first lemma will reduce the problem to the case in which r(F)=
fin r(F).

LEMMA 2. Let H be a pure unbounded subgroup of a direct sum of cyclic p-
groups F. Then there exists decompositions H=B@® R and F=B®K® L for which B is
bounded, R<K and fin r(R)=r(R)=r(K)=fin r(K).

Proof. Let k be a nonnegative integer and B a maximal p*-bounded summand
of H such that H=B®R and r(R)=fin r(R). Since H is pure in F, it can be extended
to a basic subgroup of F. Using Theorem 29.3 in [4] we obtain the decomposition F=
B®G with R<G. Since any infinite subgroup of a direct sum of cyclics can be
embedded in a direct summand of the same rank, we can write G=K®L with r<K
and r(R)=r(K).

Remark 3. Let A, <2, be infinite cardinals. Then there exists a cardinal p such
that p is not cofinal with w and 4, <p<4,. To see this, let p be the successor of 4,.
Since 4, <p <4, and any infinite successor cardinal is regular [Theorem 8.6 in 2], we
have the desired conclusion.

Remark 4. Let Fbe an unbounded direct sum of cyclic groups with fin r(F)=
r(F)=1>¥,. Fix a decomposition F= @ F; where F; is a direct sum of cyclic

icw*

groups of order p'. If 1 is not confinal with w, then

(5) there exists a sequence of positive integers
ko<k; <k, <--- such that r(F,)=A4 for all iew.

If A is cofinal with w and (5) does not hold, then,

(6) there exists a sequence of positive integers
ko<k,<k,<--- such that r(F,)=4, for iew where
{A:}ice 18 a strictly increasing sequence of cardinals
and lim ;=4

The following lemma is the key to our next theorem.

LEMMA 7. Let F be an unbounded direct sum of cyclic p-groups with fin r(F) =
r(F). Fix a decomposition of F, say F= @ F,, where F, is a direct sum of cyclic

groups of order p". Let H= @ {x,> be a pure subgroup of F where 1 is a cardinal and

aei
o(x,)=p* for a fixed positive integer k.
(1) If Ais finite then H[p]< @ F,[p] for some positive integer m>k.
k

<ns<m
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(i) If 4 is not cofinal with » then H=H,®H, such that Hy= @ {(x,> for

aeX

some subset X of A with | X |=A and H,[p]< @ F,[p] for some integer m>k.
k<n<m

(il) If 4 is cofinal with w and p is any cardinal with p<2, then H=H,®H,
such that Hy = @ <{x,» with|X |>pand H,[p]< @ F,[p]for some integer m>k.
acX k<sn<m
Proof. Case (i) is clear. For each integer m >k let X, be the set of all e A such
that {x,y[pls @ F, Since |J X,=A4, we must have, for some m, | X, |=1
k<sn<m k<sm<o
if A is not cofinal with w. If 1 is cofinal with w and 4, <1,<A;<-- - is a sequence of
cardinals converging to 4, then we have for each J; a positive integer m such that

| X,.| = 4;. Hence we can obtain the desired conclusion.

THEOREM 8. Let H be a pure subgroup of a direct sum of cyclic p-groups F.
Then H contains a summand K of F with fin (K)=fin (H) and r(K)=r(H).
Moreover, if H= @ {x) is any given decomposition of H, we can choose K to be

xeX

generated by a subset of X.

Proof. If H is bounded then H itself is a summand of F, so we assume H is
unbounded. In addition, by Lemma 2, we may assume fin r(H)=r(H )=r(F)=
fin (F)=A=N,. Let F=@ F, and H= @ H, be decompositions where F, and

neo* ne o*

H, are direct sums of cyclic groups of order p". Also for each positive integer #, fix a
decomposition of H,, say H,= @ <h,». Since r(H)=fin r(H)=1, there exists a

aeX,

sequence of integers ko <k; < - - - such that:
Case 1. 1 is not cofinal with w and r(H, )= 4 for all icw.
Case 2. 1 is cofinal with w and r(H,)=A4 for all i€ .
Case 3. Ziscofinal with w and r(H, ) =1, where {1;};.,, is a strictly increasing
sequence of cardinals with lim A;=A.

We will prove the theorem for Case 1 and then indicate the slight changes needed
for Cases 2 and 3. We will choose inductively a subsequence of {k;};.,, say {}:..,
such that H, =U,@L; with

(@ r(U)=A and

(b Ulpls @ F,[p].

ni<n<ni+y
Let ny=k, and assume that n; has been defined where n,=k; for some jew. By
Lemma 7(ii), there exists a decomposition H, = U;@®L and an integer m > n, such that
r(U)=4and Ujlple @ F,[p]. Let; be the least integer such that k;>m. Let

nisn<m
n;.+;=k; Hence by induction we have the subsequence {n;},., with the desired
properties. Let K= @ U..
For each iew let M; be a pure subgroup of @ F, supported by Uj[p].
ni<n<niiy

Then M; is a summand of this bounded group. Thus M= @ M, is a summand of F

iew
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with M[p]=K[p]. By [Theorem 16 in 7], K is a summand of F which proves Case 1.

For Case 2, let {4;};.,, be a strictly increasing sequence of cardinals converging to
. Assuming that n; has been defined, we have by Lemma 4(iii), H,,= U;® L such that
r(H,)=1; and a positive integer m such that, etc.

For Case 3, we let ny=k, and choose n; inductively with H, =U,®L where
rU)=4.

That K is generated by a subset of X follows from the way the summand was
chosen in Lemma 7. ‘

At this point we would like to discuss the extension of Theorem 8 to arbitrary
direct sums of cyclic groups.

Proof (of Theorem 1). Let H be a pure subgroup of a direct sum of cyclic groups
F. Decompose H=H,® H, where H, is torsion free and H, is torsion. Let F, be the
torsion subgroup of F, and let g: F— F/F, be the natural homomorphism. It is easily
shown that H,@F, is pure in F and, since F, is pure in F, we have ¢(H,) pure in F/F,.
By a lemma of Erdés (see [3] or Lemma 51.2 in [4]), we can write F/F,= K@ R where K
is a subgroup of o(H) with r(K)=r(c(H)). Decompose K= @ (x,> and R=
@ <{x,>. For each ae X we may choose y,€ H such that o( ya)a:(xa and for each

aeY

€Y we may choose y,eF such that o(y,)=x, Let K= @ <y,> and R=

acX

@ <{y>. Since F, is pure in F and F/F, is free, we have F=K,®R®F, with K<H

aeY

and r(K)=r(H). Next we decompose F,=@F, and H,= P H, into their primary
components. Since H,S F,, we have, by Theorem 8, that each H, has a summand
K, of the desired rank which is also a summand of F,. Thus, setting K=K,®
(DK,), we have H containing K a summand of F with ro(K)=ro(H), and for all
primes p, both r(K)=r,(H) and fin r,(K)=fin r(H).

§2

A well-known problem in the theory of abelian p-groups is to determine whether
a given group G is C-decomposable. In [1] several necessary and sufficient conditions
are given for a p®*"-projective p-group G to be C-decomposable. One of the
conditions is that G[p"]=S[p"]® P where S is a pure subgroup of G and both S and
G/P are direct sums of cyclic groups. Using the results of § 1, we will give another
proof of the sufficiency. That p®*!-projective p-groups are C-decomposable (see [6]
for a different proof) will follow as a corollary.

We will need several lemmas. Using the notation in the preceding paragraph,
Lemma 9 will show that we can find a summand C of G such that C=@, and
fin (C)=fin r(S). Lemma 11 will be used to show that G is C-decomposable in the
case that fin r (S)<fin /(G). Lemma 12 reduces the problem to that case r(S)=
fin r(S).

LEMMA 9. Let H be a subgroup of a group G such that G/H is a direct sum of
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cyclic groups. Suppose that there exists a pure subgroup S of G such that S is a direct
sum of cyclic groups, S n H=0, and the natural map n: G—G/H preserves heights of
elements of S. Then there exists a subgroup T of S such that T is a summand of G,
ro(T)=ro(S), and both r (T)=r,(S) and fin r (T)=fin r (S) for all primes p.

Proof. Since n preserves heights of elements of S and S~ H=0, S=n(S)=
(S+ H)/H is a pure subgroup of G/H. Hence by Theorem 1 there exists a subgroup T’
of S such that n(T) is a direct summand of G/H, ro(T)=ry(S), and for all primes p,
r(T)=r,(S)and fin r(T)=fin r (S). By Lemma 6 in [8], T'is a direct summand of G.

COROLLARY 10. Let G be a torsion group such that G/G* (G'=(\nG) is a

direct sum of cyclic groups. Let S be a pure subgroup of G and a direct sum of cyclic
groups. Then S contains a summand T of G with r (T)=r,(S) and fin r(T)=fin r (S)
for all primes p.

LEMMA 11. Let G be a p-group such that fin r(G)>N,. Let H be a subgroup of
G such that H is a direct sum of cyclic groups and r(G/H) <fin r(G). Then there exists a
summand C of G such that C is a direct sum of cyclic groups and fin r(C)=fin r(G).

Proof. Write G=L+ H where L is a subgroup of G generated by a set of coset
representatives of G/H. Fixing a decomposition of H as a direct sum of cyclic groups
we can decompose H into C@®D where D is exactly those cyclic summands in the
decomposition of H containing a nonzero component of an element of L n H. Note
that G=(L+D)®C. Since r(L+D)X,=r(L)-No=r(G/H) Ry <fin r(G), it follows
that fin r(C)=fin r(G).

LEMMA 12. Suppose that G[p"]=S[p"|® P (direct as valuated groups where the
valuation of elements are heights in G).where S is a pure subgroup of G and both S and
G/P are direct sums of cyclic groups. If S=T®S’ where T is bounded, then
G/(P®T[p") is a direct sum of cyclic groups.

Proof. Since T@®P is a valuated direct sum, (T@® P)/P is pure in G/P. Since T is
bounded, (T@® P)/P is a bounded pure subgroup of G/P and hence a direct summand
of G/P. Writing G/P=(T+ P)/|P@®R/P, we see that

G/(T[p"1+P)=(G/P)/(T[p"1+ P)/P)
=((T+P)/P)/(T[p"+P)/P)DR/P
>p"TOR/P=P,.

The following theorem is the (c) implies (a) part of Theorem 8 in [1].

THEOREM 13. Let G be a p®*"-projective p-group such that G[p")=S[p"|® P
(direct as valuated groups) where S is a pure subgroup of G and both S and G|P are
direct sums of cyclic groups. Then there exists a summand C of G such that C is a direct
sum of cyclic groups and fin r(C)=fin r(G).
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Proof. Let T be a subgroup of G generated by a pure independent set maximal
with respect to the property that T[p"] < P. Then since S@® P is a valuated direct sum,
it follows that B=S@® T is a basic subgroup of G. Before proceeding, we want to note
that Lemma 12 allows us to assume that »(S)=fin r(S).

Case 1. fin r(S)<fin #(G). Pick H maximal disjoint from S containing P. By
our choice of H, it is neat and thus (G/H)[p]l=G|[p]l/H[p]l=
G[pl/Plp]=S[p]l. Thus r(G/H)=r(S)=finr(S)<finr(G). Also
H/H[p"|=H/P<G/P=@,. Since p"H~H/H[p"|=@®,, we have
H=@,.. By Lemma 11, we have our desired summand C.

Case 2. finr(S)=fin n(G). Since P®S[p"] is a valuated direct sum, the
natural map n: G—G/P preserves heights of elements of S. Hence
the result follows from Lemma 9.

COROLLARY 14 (Fuchs and Irwin [6]). If G is a p®*-projective p-group, then
there exists a summand C of G such that C is a direct sum of cyclic groups and
fin /(C)=fin 1(G).

Proof. From Theorem 1 of [6], G[p]=S@& P where S is a pure subgroup of G
and both S and G/P are direct sums of cyclic groups. Hence the corollary follows
from Theorem 13.

Using the remarks in [6, pp. 465—466], the proof of the corollary can be reduced
to Case 2 in the proof of Theorem 13.
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