10 research outputs found

    Crystal structure of the sesquihydrate of dehydroepiandrosterone propan-2-ylidene hydrazone: Participation of the hydrazonyl nitrogen atoms as acceptors in the elaborate hydrogen bond scheme

    Get PDF
    The crystal structure of the sesquihydrate of dehydroepiandrosterone propan-2-ylidene hydrazone, [(7)2·(H2O)3], isolated from a solution of dehydroepiandrosterone propan-2-ylidene hydrazone, (7), in moist ethanol at room temperature, has been determined from data collected at 100 K. The sesquihydrate recrystallizes in the orthorhombic space group, P212121 with Z = 8. The asymmetric unit of [(7)2·(H2O)3] consists of two independent molecules of the steroid, Mol A and Mol B, and three moles of water. The six membered saturated rings, A and C, in both molecules have ideal or near ideal chair shapes, the unsaturated rings, B, have the expected half-chair shapes, while the five-membered rings, D, have envelope shapes with flaps at C114 and C214 for Mol A and Mol B, respectively. Differences in the conformations of the two molecules reside essentially completely within the hydrazonyl fragments with significantly different torsional angles, C117-N120-N121-C122 (in Mol A) and C217-N220-N221-C222 (in Mol B), of 149.19(14) and -93.08(17)°, respectively. The difference in this torsional angle is reflected in the hydrogen bonds involving the nitrogen atoms in the hydrazonyl units: it is of interest that the hydrazonyl nitrogen atoms partake as acceptors in hydrogen bonding with water molecules. The only intermolecular interactions in these molecules are hydrogen bonds -all classical O-H-O and OH···N hydrogen bonds with just one exception, a C-H···O(water) hydrogen bond. Of interest, there are no direct steroid-steroid links: molecules are linked solely by hydrogen bonds involving the hydrate molecules. All three hydrate molecules take part in the indirect linking of the steroid molecules, but each has its own set of contacts

    Structural study of three heteroaryl oximes, heteroaryl-N=OH: Compounds forming strong C3 molecular chains

    Get PDF
    In order to further investigate the structural chemistry of oximes and to further establish the main structural arrangements adopted, we have determined the crystal structure of and carried out Hirshfeld surface calculations on three heteroaryl oximes, namely (Z)-thiophene-2-carbaldehyde oxime (1), (Z)-1H-pyrrole-2 carbaldehyde oxime (2) and (Z)-5-nitrofuran-2-carbaldehyde oxime (3). As confirmed by both techniques, the major intermolecular interactions in each compound are classical N—H···O hydrogen bonds, which link the molecules into C3 chains. Such an arrangement has been previous reported as an important aggregation mode for oximes. Secondary interactions, C—H···π and C—H···O interactions, in compounds 1 and 2, and interactions involving the nitro group oxygen atoms in compound 3 link the chains into three dimensional arrays

    Synthesis and Biological Evaluation of Novel 6-Hydroxy-benzo[d][1,3]oxathiol-2-one Schiff Bases as Potential Anticancer Agents

    No full text
    With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1) leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a–r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C) and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116) by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 μM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer

    Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication—2018 Student Debates

    No full text

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore