71 research outputs found

    Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa

    Get PDF
    Organisms in possession of a frondose body plan are amongst the oldest and most enigmatic members of the soft‐bodied Ediacaran macrobiota. Appraisal of specimens from the late Ediacaran Ediacara Member of South Australia reveals that the frondose taxon Arborea arborea probably possessed a fluid‐filled holdfast disc, the size and form of which could vary within populations. Mouldic preservation of internal anatomical features provides evidence for tissue differentiation, and for bundles of tubular structures within the stalk of the organism. These structures connect in a fascicled arrangement to individual lateral branches, before dividing further into individual units housed on those branches. The observed fascicled branching arrangement, which seemingly connects individual units to the main body of the organism, is consistent with a biologically modular construction for Arborea, and raises the possibility of a colonial organization. In conjunction with morphological characters previously recognized by other authors, including apical‐basal and front‐back differentiation, we propose that to the exclusion of all alternative known possibilities, Arborea can be resolved as a total group eumetazoan

    Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa

    Get PDF
    Organisms in possession of a frondose body plan are amongst the oldest and most enigmatic members of the soft‐bodied Ediacaran macrobiota. Appraisal of specimens from the late Ediacaran Ediacara Member of South Australia reveals that the frondose taxon Arborea arborea probably possessed a fluid‐filled holdfast disc, the size and form of which could vary within populations. Mouldic preservation of internal anatomical features provides evidence for tissue differentiation, and for bundles of tubular structures within the stalk of the organism. These structures connect in a fascicled arrangement to individual lateral branches, before dividing further into individual units housed on those branches. The observed fascicled branching arrangement, which seemingly connects individual units to the main body of the organism, is consistent with a biologically modular construction for Arborea, and raises the possibility of a colonial organization. In conjunction with morphological characters previously recognized by other authors, including apical‐basal and front‐back differentiation, we propose that to the exclusion of all alternative known possibilities, Arborea can be resolved as a total group eumetazoan

    Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations

    Get PDF
    © 2017 International Association for Gondwana Research. Published by Elsevier B.V.. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (Dec 2017) in accordance with the publisher’s archiving policyThe ancient in situ fossil seafloor communities of the Ediacara biota present an unparalleled window into the assembly of the earliest complex macroscopic organisms, including early animals on Earth ca. 555 million years ago (mya). The unique preservation style of Ediacara fossil seafloors preserves whole communities virtually ‘frozen in time’, including both living and dead organisms at the time of burial. This phenomenon, where the fossilized organisms are arranged as they were in life offers an unparalleled opportunity to examine ecological patterns in some of the earliest examples of animal communities in deep time. The small, anchor-shaped fossil genus Parvancorina is common among the Ediacara biota; however, its morphology and ecology have received little attention. Here, we describe a population of juvenile Parvancorina preserved on a section of fossil seafloor recently excavated from the characteristic Ediacara Member from Ediacara Conservation Park in the Flinders Ranges, South Australia. We applied spatial methods to the sample population of Parvancorina (n = 202) and found that they demonstrated two size-clusters, distinguishing juveniles from adults, and further analyses showed that the smaller specimens tended to be spatially aggregated. For the first time among any Ediacara taxon, we found that this sample population of Parvancorina demonstrated a strong bimodal orientation, suggesting that orientation played an important behavioral role in its autecology. The aggregated spatial distribution and bimodal orientation of Parvancorina likely resulted from behavioral responses to the influence of benthic currents, suggesting that Parvancorina had a complex sensory network, and was capable of motility

    A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group

    Get PDF
    BACKGROUND: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved. RESULTS: A new vetulicolian from the Emu Bay Shale Konservat-LagerstĂ€tte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity. CONCLUSIONS: Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions – the former being non-fusiform and used for filter feeding and the latter originally segmented – plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-014-0214-z) contains supplementary material, which is available to authorized users

    Data from: An early Cambrian chelicerate from the Emu Bay Shale, South Australia

    No full text
    The Emu Bay Shale LagerstÀtte (Cambrian Series 2, Stage 4) occurs on the north coast of Kangaroo Island, South Australia. Over 50 species are known from here, including trilobites and non-biomineralized arthropods, palaeoscolecids, a lobopodian, a polychaete, vetulicolians, nectocaridids, hyoliths, brachiopods, sponges and chancelloriids. A new chelicerate, Wisangocaris barbarahardyae gen. et sp. nov., is described herein, based on a collection of some 270 specimens. It is up to 60 mm long, with the length of the cephalic shield comprising about 30% that of the exoskeleton. The cephalic margin has three pairs of bilaterally-symmetrical small triangular spines. A pair of small eyes is placed well forwards on the ventral margin of the cephalic shield. The trunk comprises 11 segments that increase in length while narrowing posteriorly, each possibly bearing a pair of biramous appendages; the most posterior segment is almost square whereas the others are transversely elongated. The spatulate telson is proportionately longer than in taxa such as Sanctacaris, Utahcaris and Leanchoilia. Up to eight (?four pairs) of 3 mm-long elements bearing alternating inward-curving short and long spines beneath the cephalic shield are interpreted as basipodal gnathobases, part of a complex feeding apparatus. A well-developed gut includes a stomach within the cephalic shield; it extends to the base of the telson. In a few specimens there are shell fragments within the gut, including those of the trilobite Estaingia bilobata (the most common species in the biota); these fragments have sharp margins and extend across the gut lumen. The species may have been a predator or a scavenger, ingesting material already broken up by a larger predator/scavenger. The morphology of this taxon shares many overall body features with Sanctacaris, and some with Sidneyia, particularly its gnathobasic complex. These chelicerate affinities are corroborated by phylogenetic analyses

    Dunn et al. Supplementary Figures

    No full text
    Supplementary figures describing the locality and stratigraphic context for specimens described in this article, as well as providing further field specimens of Arborea arborea

    The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late Ediacaran

    No full text
    The evolutionary trajectory of early complex life on Earth is interpreted largely from the fossils of the Precambrian soft-bodied Ediacara Biota, which appeared and evolved during a time of dynamic biogeochemical and environmental fluctuation in the global ocean. The Ediacara Biota is historically divided into three successive Assemblages—the Avalon, the White Sea, and the Nama—which are marked by the appearance of novel biological traits and ecological strategies. In particular, the younger White Sea and Nama Assemblages record a “second wave” of ecological innovations, which included not only the development of uniquely Ediacaran body plans and ecologies, such as matground adaptations, but also the dual emergence of bilaterian-grade animals and Phanerozoic-style ecological innovations, including spatial heterogeneity, complex reproductive strategies, ecospace utilization, motility, and substrate competition. The late Ediacaran was an evolutionarily dynamic time characterized by strong environmental control over the distribution of taxa in time and space
    • 

    corecore