228 research outputs found
An investigation of substituent effects in some aromatic compounds
A review has been given of molecular orbital theory and of its application of calculations of ground and excited state properties of substituted aromatic hydrocar bons .The nitrations of ortho, meta and para-xylsnes and naphthalene have been studied, alone and in competitive reactions with benzene, using, nitric acid/acetic acid as the nitrating medium. Partial rate factors have been determined relative to benzene. Competitive nitrations have been carried out between: naphthalene and 2-flucro-6-mathylnaphthalene, naphthalene and 2-acetamido-6-methylnaphthalene, 2-methylnaphthalene and 2, 6-dimethylnaphthalene, 2-methoxy-6-methylnaphthalene and 2,6-dimethylnaphthalene. Partial rate factors have been determined relative to naphthalene. Proton magnetic resonance studies at 60, 100 and 220 Mc/s have been made of a series of 2, 6-disubstituted naphthalenes. An attempt has been made to interpret the experimental data by detailed Parlser-Parr-Pople self-consistent field molecular orbital calculations
Recommended from our members
Healthy Placemaking - Revitalizing Springfield\u27s Medical District
Healthy Placemaking - Revitalizing Springfield’s Medical District
Healthy Placemaking for the North End Medical District was a community engagement urban design studio for Springfield, MA to propose a new vision for the Medical District as an exemplary model of healthy place-making. WHAT IS HEALTHY PLACE-MAKING? Healthy place-making is a creative process that generates an interconnected mixture of amenities that activate the public realm, creating a livelihood that builds upon sense of place. Urban design strategies consider the ecological relationship between people and the environment in order to provide design interventions that improve the mental, physical, social, and economic wellbeing of inhabitants. Contextually rooted in the history of the area, new and adapted development illustrates environmentally responsible initiatives.
EXISTING CONDITIONS 1. No Sense of Place 2. Weak Connections 3. No Mix of Uses and Amenities 4. Unhealthy Environment
STUDIO PROCESS AND COMMUNITY ENGAGEMENT Meetings with diverse stakeholders – residents, community leaders, employees in the medical industry- led to a better understanding of assets, challenges and goals from different perspectives. Listening to their ideas was influential for developing the design program.
DESIGN STRATEGIES AND OBJECTIVES 1. Enhance the Sense of Place The designs create a sense of place through Landscape Architecture for playing and gathering and the enjoyment of the beauty and healing of plants. 2. Increase Connections The designs create new green connections to work, school and nature in the city. 3. Provide a Balance of Amenities A variety of amenities are introduced into the urban fabric to activate the street life while also stimulating the local economy. 4. Green Infrastructure as a Framework for Public Health Green infrastructure and public health are intrinsically linked: stormwater management, tree canopy, pervious surface cover, and public open space.
PLACE-ORIENTED DESIGN PROPOSALS The work explores design proposals for three different places: DESTINATION WASON RIVERSIDE creates two new destinations on the edge of the Connecticut River that engage people and plants, BRIGHTWOOD’S MEDICAL EDGE designs a livable neighborhood with a mix of amenities, gathering places, infill for housing and a remodeled industrial edge to mitigate the impact for residents and to improve the services, and HEALTHY SPACES FOR HEALTHY PEOPLE designs a walkable, green Medical Campus with the framework of the healing landscape
Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue
Context: Assessments of skeletal muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function following fatigue; however observations have not been contextualised by concurrent physiological measures. Objective: The aim of the present investigation was to measure peripheral fatigue-induced alterations in mechanical and contractile properties of the plantar flexor muscles through non-invasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) in order to validate TMG as a gauge of peripheral fatigue. Design: Pre- and post-test intervention with control. Setting: University laboratory. Participants: Twenty-one healthy male volunteers. Interventions: Subjects plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5 minute rest period (control) or a 5 minute electrical stimulation intervention (fatigue). Main Outcome Measures: Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the Gastrocnemius Medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue and PMT was measured to assess muscle stiffness. Results: Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs. 4.0 ± 1.4 mm vs, p=0.031), while contraction velocity remained unaltered. Additionally, MVC significantly declined by 122.6 ± 104 N (p<0.001) following stimulation (fatigue). PMT was significantly increased following fatigue (139.8 ± 54.3 vs. 111.3 ± 44.6 N, p=0.007). Conclusion: TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement, accompanied by elevated PMT. TMG could be useful in establishing fatigue status of skeletal muscle without exacerbating the functional decrement of the muscle
Wheat Vacuolar Iron Transporter TaVIT2 transports Fe and Mn and is effective for biofortification
Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular iron deficiency anaemia is a major global health issue, but the iron content of staple crops such as wheat is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for biofortification of wheat (Triticum aestivum), we functionally characterized homologs of the Vacuolar Iron Transporter (VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns, but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue growth of a yeast mutant lacking the vacuolar iron transporter. TaVIT2 also complemented a manganese transporter mutant, but not a vacuolar zinc transporter mutant. By over-expressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a > 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the UK. The anti-nutrient phytate was not increased and the iron in the white flour fraction was bioavailable in-vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and was also effective in barley. Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue bypassing existing homeostatic mechanisms
FEA based impedance method for designing active structures
ABSTRACT The impedance method predicts the response of a structure to piezoelectric patch actuators. The drawback has always been that the structure's impedances had to be calculated analytically. This work uses finite element analysis (FEA) to generate the structure's impedances from eigenvectors. This approach allows for the method to be applied to a much wider variety of structures than before, as for many structures of interest the necessary closed form expressions do not exist. At present, the method has been used with two-dimensional structures, though it should be extendable to any structure that can be accurately modeled by FEA. From a single finite element run, multiple actuator and response locations can be examined. The equations to recover the impedances and structure's response from a FEA normal mode analysis are developed. The method is then experimentally verified for plates with different boundary conditions, material types, and actuator orientations. Comparisons are made between calculating the impedances using just the eigenvectors at the center points of the patch sides and using a shape function to describe the eigenvectors along the patch sides. The method is found to accurately predict the plate's response. In several cases the predicted response fell within the range of experimentally recovered responses
The Usefulness of Elemental Iron for Cereal Flour Fortification: a Sustain Task Force Report
Fortification of cereal flours may be a useful public health strategy to combat iron deficiency. Cereal flours that are used shortly after production (e.g., baking flour) can be fortified with soluble iron compounds, such as ferrous sulfate, whereas the majority of flours stored for longer periods is usually fortified with elemental iron powders to avoid unacceptable sensory changes. Elemental iron powders are less well absorbed than soluble iron compounds and they vary widely in their absorption depending on manufacturing method and physicochemical characteristics. Costs vary with powder type, but elemental iron powders are generally less expensive than ferrous sulfate. This review evaluates the usefulness of the different elemental iron powders based on results from in vitro studies, rat assays, human bioavailability studies, and efficacy studies monitoring iron status in human subjects. It concludes that, at the present time, only electrolytic iron powder can be recommended as an iron fortificant. Because it is only approximately half as well absorbed as ferrous sulfate, it should be added to provide double the amount of iro
Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells
Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n=15) were given a test meal of 200g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p=0.003). Sub-group B (n=9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p=0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p=0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p=0.009) and 35% (p=0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification
Estimation of Dietary Iron Bioavailability from Food Iron Intake and Iron Status
Currently there are no satisfactory methods for estimating dietary iron absorption (bioavailability) at a population level, but this is essential for deriving dietary reference values using the factorial approach. The aim of this work was to develop a novel approach for estimating dietary iron absorption using a population sample from a sub-section of the UK National Diet and Nutrition Survey (NDNS). Data were analyzed in 873 subjects from the 2000–2001 adult cohort of the NDNS, for whom both dietary intake data and hematological measures (hemoglobin and serum ferritin (SF) concentrations) were available. There were 495 men aged 19–64 y (mean age 42.7±12.1 y) and 378 pre-menopausal women (mean age 35.7±8.2 y). Individual dietary iron requirements were estimated using the Institute of Medicine calculations. A full probability approach was then applied to estimate the prevalence of dietary intakes that were insufficient to meet the needs of the men and women separately, based on their estimated daily iron intake and a series of absorption values ranging from 1–40%. The prevalence of SF concentrations below selected cut-off values (indicating that absorption was not high enough to maintain iron stores) was derived from individual SF concentrations. An estimate of dietary iron absorption required to maintain specified SF values was then calculated by matching the observed prevalence of insufficiency with the prevalence predicted for the series of absorption estimates. Mean daily dietary iron intakes were 13.5 mg for men and 9.8 mg for women. Mean calculated dietary absorption was 8% in men (50th percentile for SF 85 µg/L) and 17% in women (50th percentile for SF 38 µg/L). At a ferritin level of 45 µg/L estimated absorption was similar in men (14%) and women (13%). This new method can be used to calculate dietary iron absorption at a population level using data describing total iron intake and SF concentration
Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.
Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≤0.01). A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth
- …