30 research outputs found

    Protein preference and elevated plasma FGF21 induced by dietary protein restriction is similar in both male and female mice

    Get PDF
    Animals that are moderately protein restricted respond to this dietary stress by increasing consumption of protein-containing foods. This is true in many species, including rodents. Rodent models of protein restriction have typically relied on only male subjects, and there are plausible reasons why female rodents may respond differently to dietary protein restriction. To address this gap in knowledge, the current experiments examined protein preference after two weeks on a 5% protein diet or 20% protein control diet, in male and female mice. We found that female protein-restricted mice, like male protein-restricted mice, increase consumption of 4% casein (protein) relative to 4% maltodextrin (carbohydrate) when presented with both simultaneously. Interestingly, this increased consumption was due to more bursts in females and more licks per burst in males, indicating possible differences in mechanism by which increased intake is achieved. Stage of the estrous cycle did not affect female responses. Moreover, we measured plasma fibroblast growth factor 21 (FGF21) – a hormone induced by protein restriction and necessary for protein preference – in male and female mice. Here, we found no statistical differences between protein-restricted males, females in diestrus, or females in proestrus. In non-restricted mice FGF21 levels were low, but significantly higher in females in proestrus than females in diestrus or males. Overall, these experiments highlight the importance of including female subjects in studies of food choice and macronutrient restriction

    Restriction of dietary protein in rats increases progressive-ratio motivation for protein

    Get PDF
    Low-protein diets can impact food intake and appetite, but it is not known if motivation for food is changed. In the present study, we used an operant behavioral task – the progressive ratio test – to assess whether motivation for different foods was affected when rats were maintained on a protein-restricted diet (REST, 5% protein diet) compared to non-restricted control rats (CON, 18% protein). Rats were tested either with nutritionally-balanced pellets (18.7% protein, Experiment 1) or protein-rich pellets (35% protein, Experiment 2) as reinforcers. Protein restriction increased breakpoint for protein-rich pellets, relative to CON rats, whereas no difference in breakpoint for nutritionally-balanced pellets was observed between groups. When given free access to either nutritionally-balanced pellets or protein-rich pellets, REST and CON rats did not differ in their intake. We also tested whether a previous history of protein restriction might affect present motivation for different types of food by assessing breakpoint of previously REST animals that were subsequently put on standard maintenance chow (protein-repleted rats, REPL, Experiment 2). REPL rats did not show increased breakpoint, relative to their initial encounter with protein-rich pellets while they were protein-restricted. This study demonstrates that restriction of dietary protein induces a selective increased motivation for protein-rich food, a behavior that disappears once rats are not in need of protein

    Predictive and motivational factors influencing anticipatory contrast: A comparison of contextual and gustatory predictors in food restricted and free-fed rats

    Get PDF
    In anticipation of palatable food, rats can learn to restrict consumption of a less rewarding food type resulting in an increased consumption of the preferred food when it is made available. This construct is known as anticipatory negative contrast (ANC) and can help elucidate the processes that underlie binge-like behavior as well as self-control in rodent motivation models. In the current investigation we aimed to shed light on the ability of distinct predictors of a preferred food choice to generate contrast effects and the motivational processes that underlie this behavior. Using a novel set of rewarding solutions, we directly compared contextual and gustatory ANC predictors in both food restricted and free-fed Sprague-Dawley rats. Our results indicate that, despite being food restricted, rats are selective in their eating behavior and show strong contextually-driven ANC similar to free-fed animals. These differences mirrored changes in palatability for the less preferred solution across the different sessions as measured by lick microstructure analysis. In contrast to previous research, predictive cues in both food restricted and free-fed rats were sufficient for ANC to develop although flavor-driven ANC did not relate to a corresponding change in lick patterning. These differences in the lick microstructure between context- and flavor-driven ANC indicate that the motivational processes underlying ANC generated by the two predictor types are distinct. Moreover, an increase in premature port entries to the unavailable sipper – a second measure of ANC – in all groups reveals a direct influence of response competition on ANC development

    Protein appetite drives macronutrient-related differences in ventral tegmental area neural activity

    Get PDF
    Acknowledgements: The authors acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals. The authors would like to thank Vaibhav Konanur for developing the analytical method used to correct fluorescence traces, Leon Lagnado for kindly loaning equipment used in initial photometry experiments, and Andrew MacAskill for useful discussions regarding analysis. This work was funded by the Biotechnology and Biological Sciences Research Council [grant #BB/M007391/1 to J.E.M.], the European Commission [grant #GA 631404 to J.E.M.], The Leverhulme Trust [grant #RPG-2017-417 to J.E.M. and J.A-S.], and Tromsø Research Foundation [grant #19-SGJMcC to J. E. M.).Peer reviewedPublisher PD

    Quantification, description and international comparison of antimicrobial use on Irish pig farms

    Get PDF
    Peer-reviewedAbstract Background There is concern that the use of antimicrobials in livestock production has a role in the emergence and dissemination of antimicrobial resistance in animals and humans. Consequently, there are increasing efforts to reduce antimicrobial use (AMU) in agriculture. As the largest consumer of veterinary antimicrobials in several countries, the pig sector is a particular focus of these efforts. Data on AMU in pig production in Ireland are lacking. This study aimed to quantify AMU on Irish pig farms, to identify the major patterns of use employed and to compare the results obtained to those from other published reports and studies. Results Antimicrobial use data for 2016 was collected from 67 Irish pig farms which represented c. 35% of national production. The combined sample population consumed 14.5 t of antimicrobial by weight of active ingredient suggesting that the pig sector accounted for approximately 40% of veterinary AMU in Ireland in 2016. At farm level, median AMU measured in milligram per population correction unit (mg/PCU) was 93.9 (range: 1.0–1196.0). When measured in terms of treatment incidence (TI200), median AMU was 15.4 (range: 0.2–169.2). Oral treatments accounted for 97.5% of all AMU by weight of active ingredient and were primarily administered via medicated feed to pigs in the post weaning stages of production. AMU in Irish pig production in 2016 was higher than results obtained from the national reports of Sweden, Denmark, the Netherlands and France but lower than the United Kingdom. Conclusions Pig production in Ireland is an important consumer of veterinary antimicrobials. The quantities and patterns of AMU on Irish pig farms are comparable to pig production in other European countries but higher than some countries with more advanced AMU reduction strategies. This AMU is characterised by a high proportion of prophylactic use and is primarily administered to pigs post weaning via medicated feed. Further studies to better understand the reasons for AMU on Irish pig farms and strategies to improve health among weaner pigs will be of benefit in the effort to reduce AMU

    Transcriptomic profiling of host-parasite interactions in the microsporidian <i>Trachipleistophora hominis</i>

    Get PDF
    BACKGROUND: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. METHODS: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. RESULTS: T. hominis has about 30 % more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. CONCLUSIONS: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1989-z) contains supplementary material, which is available to authorized users

    Genetic background influences effect of neurokinin-1 receptor knockout in the mouse

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optical suppression of drug-evoked phasic dopamine release.

    Get PDF
    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior
    corecore