890 research outputs found

    Electron-Pair Theories of Molecular Electronic Structure

    Get PDF
    Abstract Not Provided

    The novels of George Whyte-Melville

    Full text link
    This item was digitized by the Internet Archive

    Antiviral roles of plant ARGONAUTES

    Get PDF
    [EN] ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions.We thank members of the Carrington lab for useful and crucial discussions, and apologize to those colleagues whose work could not be cited because of space and reference limitations. This work was supported by grants from the National Science Foundation (MCB-1231726 and MCB-1330562) and National Institutes of Health (AI043288) to James C Carrington, and from the European Commission (H2020-MSCA-IF-2014-655841) to Alberto Carbonell.Carbonell, A.; Carrington, JC. (2015). Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology. 27:111-117. https://doi.org/10.1016/j.pbi.2015.06.013S11111727Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 14(7), 447-459. doi:10.1038/nrg3462Poulsen, C., Vaucheret, H., & Brodersen, P. (2013). Lessons on RNA Silencing Mechanisms in Plants from Eukaryotic Argonaute Structures. The Plant Cell, 25(1), 22-37. doi:10.1105/tpc.112.105643Martínez de Alba, A. E., Elvira-Matelot, E., & Vaucheret, H. (2013). Gene silencing in plants: A diversity of pathways. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1829(12), 1300-1308. doi:10.1016/j.bbagrm.2013.10.005Csorba, T., Kontra, L., & Burgyán, J. (2015). viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479-480, 85-103. doi:10.1016/j.virol.2015.02.028Vaucheret, H. (2008). Plant ARGONAUTES. Trends in Plant Science, 13(7), 350-358. doi:10.1016/j.tplants.2008.04.007Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358Qu, F., Ye, X., & Morris, T. J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proceedings of the National Academy of Sciences, 105(38), 14732-14737. doi:10.1073/pnas.0805760105Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X., … Ding, S.-W. (2011). The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana    . The Plant Cell, 23(4), 1625-1638. doi:10.1105/tpc.110.082305Dzianott, A., Sztuba-Solińska, J., & Bujarski, J. J. (2012). Mutations in the Antiviral RNAi Defense Pathway Modify Brome mosaic virus RNA Recombinant Profiles. Molecular Plant-Microbe Interactions®, 25(1), 97-106. doi:10.1094/mpmi-05-11-0137Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., … Carrington, J. C. (2015). Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLOS Pathogens, 11(3), e1004755. doi:10.1371/journal.ppat.1004755Harvey, J. J. W., Lewsey, M. G., Patel, K., Westwood, J., Heimstädt, S., Carr, J. P., & Baulcombe, D. C. (2011). An Antiviral Defense Role of AGO2 in Plants. PLoS ONE, 6(1), e14639. doi:10.1371/journal.pone.0014639Jaubert, M., Bhattacharjee, S., Mello, A. F. S., Perry, K. L., & Moffett, P. (2011). ARGONAUTE2 Mediates RNA-Silencing Antiviral Defenses against Potato virus X in Arabidopsis    . Plant Physiology, 156(3), 1556-1564. doi:10.1104/pp.111.178012Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants  . The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945Zhang, X., Zhang, X., Singh, J., Li, D., & Qu, F. (2012). Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 86(12), 6847-6854. doi:10.1128/jvi.00497-12Ma, X., Nicole, M.-C., Meteignier, L.-V., Hong, N., Wang, G., & Moffett, P. (2014). Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. Journal of Experimental Botany, 66(3), 919-932. doi:10.1093/jxb/eru447Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043Hamera, S., Song, X., Su, L., Chen, X., & Fang, R. (2011). Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. The Plant Journal, 69(1), 104-115. doi:10.1111/j.1365-313x.2011.04774.xBhattacharjee, S., Zamora, A., Azhar, M. T., Sacco, M. A., Lambert, L. H., & Moffett, P. (2009). Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. The Plant Journal, 58(6), 940-951. doi:10.1111/j.1365-313x.2009.03832.xRaja, P., Sanville, B. C., Buchmann, R. C., & Bisaro, D. M. (2008). Viral Genome Methylation as an Epigenetic Defense against Geminiviruses. Journal of Virology, 82(18), 8997-9007. doi:10.1128/jvi.00719-08Raja, P., Jackel, J. N., Li, S., Heard, I. M., & Bisaro, D. M. (2013). Arabidopsis Double-Stranded RNA Binding Protein DRB3 Participates in Methylation-Mediated Defense against Geminiviruses. Journal of Virology, 88(5), 2611-2622. doi:10.1128/jvi.02305-13Scholthof, H. B., Alvarado, V. Y., Vega-Arreguin, J. C., Ciomperlik, J., Odokonyero, D., Brosseau, C., … Moffett, P. (2011). Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana        . Plant Physiology, 156(3), 1548-1555. doi:10.1104/pp.111.178764Ghoshal, B., & Sanfaçon, H. (2014). Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology, 456-457, 188-197. doi:10.1016/j.virol.2014.03.026Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M. C., Matsumoto-Yokoyama, E., Mitsuhara, I., … Ishikawa, M. (2010). In Vitro Assembly of Plant RNA-Induced Silencing Complexes Facilitated by Molecular Chaperone HSP90. Molecular Cell, 39(2), 282-291. doi:10.1016/j.molcel.2010.05.014Schuck, J., Gursinsky, T., Pantaleo, V., Burgyán, J., & Behrens, S.-E. (2013). AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41(9), 5090-5103. doi:10.1093/nar/gkt193Zhu, H., Duan, C.-G., Hou, W.-N., Du, Q.-S., Lv, D.-Q., Fang, R.-X., & Guo, H.-S. (2011). Satellite RNA-Derived Small Interfering RNA satsiR-12 Targeting the 3’ Untranslated Region of Cucumber Mosaic Virus Triggers Viral RNAs for Degradation. Journal of Virology, 85(24), 13384-13397. doi:10.1128/jvi.05806-11Cao, M., Du, P., Wang, X., Yu, Y.-Q., Qiu, Y.-H., Li, W., … Ding, S.-W. (2014). Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs inArabidopsis. Proceedings of the National Academy of Sciences, 111(40), 14613-14618. doi:10.1073/pnas.1407131111Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.xMiozzi, L., Gambino, G., Burgyan, J., & Pantaleo, V. (2012). Genome-wide identification of viral and host transcripts targeted by viral siRNAs inVitis vinifera. Molecular Plant Pathology, 14(1), 30-43. doi:10.1111/j.1364-3703.2012.00828.xDe Ronde, D., Pasquier, A., Ying, S., Butterbach, P., Lohuis, D., & Kormelink, R. (2013). Analysis ofTomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Molecular Plant Pathology, 15(2), 185-195. doi:10.1111/mpp.12082Lacombe, S., Bangratz, M., Vignols, F., & Brugidou, C. (2010). The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. The Plant Journal, 61(3), 371-382. doi:10.1111/j.1365-313x.2009.04062.xGuo, H., Song, X., Xie, C., Huo, Y., Zhang, F., Chen, X., … Fang, R. (2013). Rice yellow stunt rhabdovirus Protein 6 Suppresses Systemic RNA Silencing by Blocking RDR6-Mediated Secondary siRNA Synthesis. Molecular Plant-Microbe Interactions®, 26(8), 927-936. doi:10.1094/mpmi-02-13-0040-rOkano, Y., Senshu, H., Hashimoto, M., Neriya, Y., Netsu, O., Minato, N., … Namba, S. (2014). In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor    . The Plant Cell, 26(5), 2168-2183. doi:10.1105/tpc.113.120535Weinheimer, I., Jiu, Y., Rajamäki, M.-L., Matilainen, O., Kallijärvi, J., Cuellar, W. J., … Valkonen, J. P. T. (2015). Suppression of RNAi by dsRNA-Degrading RNaseIII Enzymes of Viruses in Animals and Plants. PLOS Pathogens, 11(3), e1004711. doi:10.1371/journal.ppat.1004711Baumberger, N., Tsai, C.-H., Lie, M., Havecker, E., & Baulcombe, D. C. (2007). The Polerovirus Silencing Suppressor P0 Targets ARGONAUTE Proteins for Degradation. Current Biology, 17(18), 1609-1614. doi:10.1016/j.cub.2007.08.039Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graff, V. (2007). The Polerovirus F Box Protein P0 Targets ARGONAUTE1 to Suppress RNA Silencing. Current Biology, 17(18), 1615-1621. doi:10.1016/j.cub.2007.07.061Csorba, T., Lózsa, R., Hutvágner, G., & Burgyán, J. (2010). Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. The Plant Journal, 62(3), 463-472. doi:10.1111/j.1365-313x.2010.04163.xFusaro, A. F., Correa, R. L., Nakasugi, K., Jackson, C., Kawchuk, L., Vaslin, M. F. S., & Waterhouse, P. M. (2012). The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology, 426(2), 178-187. doi:10.1016/j.virol.2012.01.026Derrien, B., Baumberger, N., Schepetilnikov, M., Viotti, C., De Cillia, J., Ziegler-Graff, V., … Genschik, P. (2012). Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proceedings of the National Academy of Sciences, 109(39), 15942-15946. doi:10.1073/pnas.1209487109Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., … Voinnet, O. (2010). Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes & Development, 24(9), 904-915. doi:10.1101/gad.1908710Zhang, X., Yuan, Y.-R., Pei, Y., Lin, S.-S., Tuschl, T., Patel, D. J., & Chua, N.-H. (2006). Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & Development, 20(23), 3255-3268. doi:10.1101/gad.1495506Duan, C.-G., Fang, Y.-Y., Zhou, B.-J., Zhao, J.-H., Hou, W.-N., Zhu, H., … Guo, H.-S. (2012). Suppression of Arabidopsis ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the Cucumber mosaic virus 2b Protein. The Plant Cell, 24(1), 259-274. doi:10.1105/tpc.111.092718Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 6(7), e1000996. doi:10.1371/journal.ppat.1000996Szabo, E. Z., Manczinger, M., Goblos, A., Kemeny, L., & Lakatos, L. (2012). Switching on RNA Silencing Suppressor Activity by Restoring Argonaute Binding to a Viral Protein. Journal of Virology, 86(15), 8324-8327. doi:10.1128/jvi.00627-12Pérez-Cañamás, M., & Hernández, C. (2015). Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-containing Viral Suppressor of RNA Silencing. Journal of Biological Chemistry, 290(5), 3106-3120. doi:10.1074/jbc.m114.593707Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G., & Bisaro, D. M. (2009). Geminivirus AL2 and L2 Proteins Suppress Transcriptional Gene Silencing and Cause Genome-Wide Reductions in Cytosine Methylation. Journal of Virology, 83(10), 5005-5013. doi:10.1128/jvi.01771-08Soitamo, A. J., Jada, B., & Lehto, K. (2012). Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biology, 12(1), 204. doi:10.1186/1471-2229-12-204Zhang, Z., Chen, H., Huang, X., Xia, R., Zhao, Q., Lai, J., … Xie, Q. (2011). BSCTV C2 Attenuates the Degradation of SAMDC1 to Suppress DNA Methylation-Mediated Gene Silencing in Arabidopsis    . The Plant Cell, 23(1), 273-288. doi:10.1105/tpc.110.081695Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. The EMBO Journal, 29(20), 3507-3519. doi:10.1038/emboj.2010.215Várallyay, É., & Havelda, Z. (2013). Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Molecular Plant Pathology, 14(6), 567-575. doi:10.1111/mpp.1202

    Negative Attitudes of Law Students: A Replication of the Alienation and Dissatisfaction Factors

    Get PDF
    In 1976 we conducted a survey of law students at The University of Michigan. Demographic information; personal goals and values; and attitudes toward the law school, the faculty, and fellow students were surveyed. We factor-analyzed the items relating to attitudes, personal goals, and values. Three major factors were identified and labeled as alienation, dissatisfaction, and sociability. We have recently described the alienation factor extensively and outlined the dissatisfaction and sociability factors. In March 1977, we conducted a second survey designed to replicate the earlier study. Despite the addition of a few new items, the questionnaire was essentially unchanged. The new study group consisted of 165 first-year students and 38 second- or third-year students. We randomly selected the first-year students from the class entering in 1976. The advanced students were enrolled in a course on evidence. We used the same procedure as in the first study to factor-analyze the data. The first two rotated factors-alienation and dissatisfaction-were quite comparable to those in the earlier study. The third factor, sociability, did not replicate, and it seems advisable to discard it as a central construct in studies of the professional socialization of law students

    Whole-genome analysis of animal A- and B-type cyclins

    Get PDF
    BACKGROUND: Multiple A- and B-type cyclins have been identified in animals, but their study is complicated by varying degrees of functional redundancy. A non-essential phenotype may reflect redundancy with a known or as yet unknown gene. Complete sequencing of several animal genomes has allowed us to determine the size of the mitotic cyclin gene family and therefore to start to address this issue. RESULTS: We analyzed the Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens genomes to identify known and novel A- and B-type cyclin genes and distinguish them from related pseudogenes. We find only a single functional A-type cyclin gene in invertebrates but two in vertebrates. In addition to the single functional cyclin A gene, the C. elegans genome contains numerous cyclin A pseudogenes. In contrast, the number and relationship of B-type cyclins varies considerably between organisms but all contain at least one cyclin B1-like gene and a cyclin B3 gene. CONCLUSIONS: There are three conserved families of mitotic cyclins in animals: A-, B3- and B-type. The precise number of genes within the A- and B-type families varies in different organisms, possibly as an adaptation to their distinct developmental strategies

    Small RNA-based antiviral defense in the phytopathogenic fungus Colletotrichum higginsianum

    Get PDF
    Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5'U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism
    corecore