381 research outputs found

    Bacterial Colony Counts During Vaginal Surgery

    Get PDF
    Objective: To describe the bacterial types and colony counts present before and during vaginal surgery. Methods: A descriptive study was undertaken of patients undergoing vaginal hysterectomy with or without reconstructive pelvic surgery. Aerobic and anaerobic bacterial cultures were obtained immediately before and throughout the surgical cases at preselected time intervals. Standard antimicrobial prophylaxis was administered in all cases. Mean total colony counts and mean anaerobic colony counts were determined by adding all colonies regardless of bacteria type. ‘Contamination’ was defined as ≥ 5000 colony-forming units/ml. Results: A total of 31 patients aged 26 to 82 years (mean age ± SD, 51 ± 15) were included. The highest total and anaerobic colony counts were found at the first intraoperative time interval. On the first set of cultures (30 minutes after the surgical scrub), 52% (16/31) of the surgical fields were contaminated, and at 90 minutes, 41% (12/29) were contaminated. A negligible number of subsequent cultures were contaminated. Conclusions: Any future interventions designed to minimize bacterial colony counts should focus on the first 30 to 90 minutes of surgery

    Challenges in sodium intake reduction and meal consumption patterns among participants with metabolic syndrome in a dietary trial

    Get PDF
    BACKGROUND: Dietary guidelines suggest limiting daily sodium intake to METHODS: Two hundred forty participants with metabolic syndrome enrolled in a dietary intervention trial to lose weight and improve dietary quality. Three 24-hour dietary recalls were collected at each visit which provided meal patterns and nutrient data, including sodium intake. A secondary data analysis was conducted to examine sodium consumption patterns at baseline and at one-year study visits. Sodium consumption patterns over time were examined using linear mixed models. RESULTS: The percentage of meals reported eaten in the home at both baseline and one-year follow-up was approximately 69%. Follow-up for the one-year dietary intervention revealed that the participants who consumed sodium greater than 2,300 mg/d declined from 75% (at baseline) to 59%, and those that consumed higher than 1,500 mg/d declined from 96% (at baseline) to 85%. Average sodium intake decreased from 2,994 mg at baseline to 2,558 mg at one-year (P \u3c 0.001), and the sodium potassium ratio also decreased from 1.211 to 1.047 (P \u3c 0.001). Sodium intake per meal varied significantly by meal type, location, and weekday, with higher intake at dinner, in restaurants, and on weekends. At-home lunch and dinner sodium intake decreased (P \u3c 0.05), while dinner sodium intake at restaurant/fast food chains increased from baseline to one-year (P \u3c 0.05). CONCLUSION: Sodium intake for the majority of participants exceeded the recommended dietary guidelines. Findings support actions that encourage low-sodium food preparation at home and encourage public health policies that decrease sodium in restaurants and prepared foods

    Stealth dark matter spectrum using LapH and Irreps

    Get PDF
    We present non-perturbative lattice calculations of the low-lying meson and baryon spectrum of the SU(4) gauge theory with fundamental fermion constituents. This theory is one instance of stealth dark matter, a class of strongly coupled theories, where the lowest mass stable baryon is the dark matter candidate. This work constitutes the first milestone in the program to study stealth dark matter self-interactions. Here, we focus on reducing excited state contamination in the single baryon channel by applying the Laplacian Heaviside method, as well as projecting our baryon operators onto the irreducible representations of the octahedral group. We compare our resulting spectrum to previous work involving Gaussian smeared non-projected operators and find good agreement with reduced statistical uncertainties. We also present the spectrum of the low-lying odd-parity baryons for the first time

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Common Familial Colorectal Cancer Linked to Chromosome 7q31: A Genome-Wide Analysis

    Get PDF
    Present investigations suggest that approximately 30% of colorectal cancer (CRC) cases arise on the basis of inherited factors. We hypothesize that the majority of inherited factors are moderately penetrant genes, common in the population. We use an affected sibling pair approach to identify genetic regions that are coinherited by siblings with CRC. Individuals from families with at least two siblings diagnosed with colorectal adenocarcinoma or high grade dysplasia were enrolled. Known familial CRC syndromes were excluded. A genome-wide scan on 151 DNA samples from 70 kindreds was completed using deCODE's 1100 short tandem repeat marker set at an average 4 cM density. Fine mapping on a total of 184 DNAs from 83 kindreds was done in regions suggesting linkage. Linkage analysis was accomplished with MERLIN analysis package. Linkage analysis revealed three genetic regions with NPL LOD scores ≥ 2.0: Ch. 3q29, LOD 2.61 (p=0.0003); Ch. 4q31.3, LOD 2.13 (p=0.0009); and Ch. 7q31.31, LOD 3.08 (p=0.00008). Affected siblings with increased sharing at the 7q31 locus have an 3.8 year (±3.5) earlier age of CRC onset although this is not statistically significant (p=0.11). No significant linkage was found near genes causing known syndromes or, regions previously reported (8q24, 9q22, and 11q23). The chromosome 3q21-q24 region reported to be linked in CRC relative pairs, is supported by our study, albeit a minor peak (LOD 0.9, p=0.02). No known familial cancer genes reside in the 7q31 locus, thus the identified region may contain a novel susceptibility gene responsible for common familial CRC

    Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families

    Get PDF
    PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers

    The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology

    Get PDF
    Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events

    Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. Methods: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). Results: The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10−5 (including six with P<5 × 10−8). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Conclusions: Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC

    Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk

    Get PDF
    DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P <7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.Peer reviewe
    • …
    corecore