14 research outputs found

    Demonstration of photomultiplier tube operation at 29 K

    Get PDF
    We describe measurements of gain, dark current, and quantum efficiency obtained while cooling a Hamamatsu R5912-02-MOD photomultiplier tube from room temperature to 29 K. We found that the PMT operated normally down to 29 K, with a reduced gain and quantum efficiency at the lowest temperatures. Furthermore, we found that the dark count rate increased as the temperature decreased. We conclude that these PMTs appear to be adequate for the requirements of the CLEAN experiment.Comment: 3 pages, 5 figure

    Measurement of scintillation efficiency for nuclear recoils in liquid argon

    Get PDF
    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr at zero electric field. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25±0.01+0.01 (correlated) above 20 keVr. © 2012 American Physical Society

    Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    Get PDF
    Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors.The index of refraction of liquid argon at the scin- tillation wavelength has not been measured, and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using existing data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship.Comment: 11 pages, 4 figure

    Triplet lifetime in gaseous argon

    Get PDF
    MiniCLEAN is a single-phase liquid argon dark matter experiment. During the initial cooling phase, impurities within the cold gas (<<140 K) were monitored by measuring the scintillation light triplet lifetime, and ultimately a triplet lifetime of 3.480 ±\pm 0.001 (stat.) ±\pm 0.064 (sys.) μ\mus was obtained, indicating ultra-pure argon. This is the longest argon triplet time constant ever reported. The effect of quenching of separate components of the scintillation light is also investigated

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background\ud Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud \ud Methods and results\ud Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud \ud Conclusions\ud This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens

    Measurement of Scintillation Efficiency for Nuclear Recoils in Liquid Argon

    No full text
    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr at zero electric field. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 ± 0.01 + 0.01 (correlated) above 20 keVr

    Dark matter and Mini-CLEAN

    No full text
    • New pulse shape discrimination results in LAr (preliminary). Discrimination measurements currently limited by ambient neutron backgrounds in aboveground laboratory • Preliminary new nuclear recoil scintillation efficiency results for argon • Will be filling micro-CLEAN with neon soon • Currently commissioning Mini-CLEAN

    Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    No full text
    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with O(eV) resolution. A lower bound of m(νe) ≳ 9(0.1) meV is set by observations of neutrino oscillations, while the KATRIN experiment-the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter-will achieve a sensitivity of m(νe) ≲ 0.2 eV. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m(νe) ≲ 40 meV using an atomic tritium source.United States. Department of Energy (Grant DE-SC0011091
    corecore