42 research outputs found

    Targeting antibiotic resistant bacteria with phage reduces bacterial density in an insect host

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recordData accessibility: Data are available from the Dryad Digital Repository at: http://dx.doi.org/10.5061/dryad.sc54383Phage therapy is attracting growing interest among clinicians as antibiotic resistance continues becoming harder to control. However, clinical trials and animal model studies on bacteriophage treatment are still scarce and results on the efficacy vary. Recent research suggests that using traditional antimicrobials in concert with phage could have desirable synergistic effects that hinder the evolution of resistance. Here, we present a novel insect gut model to study phage-antibiotic interaction in a system where antibiotic resistance initially exists in very low frequency and phage specifically targets the resistance bearing cells. We demonstrate that while phage therapy could not reduce the frequency of target bacteria in the population during positive selection by antibiotics, it alleviated the antibiotic induced blooming by lowering the overall load of resistant cells. The highly structured gut environment had pharmacokinetic effects on both phage and antibiotic dynamics compared with in vitro: antibiotics did not reduce the overall amount of bacteria, demonstrating a simple turnover of gut microbiota from non-resistant to resistant population with little cost. The results imply moderate potential for using phage as an aid to target antibiotic resistant gut infections, and question the usefulness of in vitro inferences.Medical Research Council (MRC)Academy of FinlandEmil Aaltonen Foundatio

    Beta-Lactam Sensitive Bacteria Can Acquire ESBL-Resistance via Conjugation after Long-Term Exposure to Lethal Antibiotic Concentration

    Get PDF
    Beta-lactams are commonly used antibiotics that prevent cell-wall biosynthesis. Beta-lactam sensitive bacteria can acquire conjugative resistance elements and hence become resistant even after being exposed to lethal (above minimum inhibitory) antibiotic concentrations. Here we show that neither the length of antibiotic exposure (1 to 16 h) nor the beta-lactam type (penam or cephem) have a major impact on the rescue of sensitive bacteria. We demonstrate that an evolutionary rescue can occur between different clinically relevant bacterial species (Klebsiella pneumoniae and Escherichia coli) by plasmids that are commonly associated with extended-spectrum beta-lactamase (ESBL) positive hospital isolates. As such, it is possible that this resistance dynamic may play a role in failing antibiotic therapies in those cases where resistant bacteria may readily migrate into the proximity of sensitive pathogens. Furthermore, we engineered a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) -plasmid to encode a guiding CRISPR-RNA against the migrating ESBL-plasmid. By introducing this plasmid into the sensitive bacterium, the frequency of the evolutionarily rescued bacteria decreased by several orders of magnitude. As such, engineering pathogens during antibiotic treatment may provide ways to prevent ESBL-plasmid dispersal and hence resistance evolution

    Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment

    Get PDF
    Standard of care for cancer is commonly a combination of surgery with radiotherapy or chemoradiotherapy. However, in some advanced cancer patients this approach might still remaininefficient and may cause many side effects, including severe complications and even death. Oncolytic viruses exhibit different anti-cancer mechanisms compared with conventional therapies, allowing the possibility for improved effect in cancer therapy. Chemotherapeutics combined with oncolytic viruses exhibit stronger cytotoxic responses and oncolysis. Here, we have investigated the systemic delivery of the oncolytic adenovirus and paclitaxel encapsulated in extracellular vesicles (EV) formulation that, in vitro, significantly increased the transduction ratio and the infectious titer when compared with the virus and paclitaxel alone. We demonstrated that the obtained EV formulation reduced the in vivo tumor growth in animal xenograft model of human lung cancer. Indeed, we found that combined treatment of oncolytic adenovirus and paclitaxel encapsulated in EV has enhanced anticancer effects both in vitro and in vivo in lung cancer models. Transcriptomic comparison carried out on the explanted xenografts from the different treatment groups revealed that only 5.3% of the differentially expressed genes were overlapping indicating that a de novo genetic program is triggered by the presence of the encapsulated paclitaxel: this novel genetic program might be responsible of the observed enhanced antitumor effect. Our work provides a promising approach combining anticancer drugs and viral therapies by intravenous EV delivery as a strategy for the lung cancer treatment.Peer reviewe

    Extracellular vesicles provide a capsid-free vector for oncolytic adenoviral DNA delivery

    Get PDF
    Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of infected cells. IEVs were able to carry the viral genome and induce infection in other cancer cells. As such, the role of EVs in the life cycle of adenoviruses may be an important part of a successful infection and may also be harnessed for cancer- and gene therapy.Peer reviewe

    Microviridae Goes Temperate: Microvirus-Related Proviruses Reside in the Genomes of Bacteroidetes

    Get PDF
    The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae might also play an important role in marine environments. In this study we present the identification and characterization of Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts. Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery. Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of bacteriophages in the family Microviridae is wider than currently appreciated

    Defining Life: The Virus Viewpoint

    Get PDF
    Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism—the virus—producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition
    corecore