26 research outputs found

    Sensory Stimulation Prior to Spinal Cord Injury Induces Post-Injury Dysesthesia in Mice

    No full text
    Chronic pain and dysesthesias are debilitating conditions that can arise following spinal cord injury (SCI). Research studies frequently employ rodent models of SCI to better understand the underlying mechanisms and develop better treatments for these phenomena. While evoked withdrawal tests can assess hypersensitivity in these SCI models, there is little consensus over how to evaluate spontaneous sensory abnormalities that are seen in clinical SCI subjects. Overgrooming (OG) and biting after peripheral nerve injury or spinal cord excitotoxic lesions are thought to be one behavioral demonstration of spontaneous neuropathic pain or dysesthesia. However, reports of OG after contusion SCI are largely anecdotal and conditions causing this response are poorly understood. The present study investigated whether repeated application of sensory stimuli to the trunk prior to mid-thoracic contusion SCI would induce OG after SCI in mice. One week prior to SCI or laminectomy, mice were subjected either to nociceptive and mechanical stimulation, mechanical stimulation only, the testing situation without stimulation, or no treatment. They were then examined for 14 days after surgery and the sizes and locations of OG sites were recorded on anatomical maps. Mice subjected to either stimulus paradigm showed increased OG compared with unstimulated or uninjured mice. Histological analysis showed no difference in spinal cord lesion size due to sensory stimulation, or between mice that overgroomed or did not overgroom. The relationship between prior stimulation and contusion injury in mice that display OG indicates a critical interaction that may underlie one facet of spontaneous neuropathic symptoms after SCI

    Developing a data sharing community for spinal cord injury research

    No full text
    The rapid growth in data sharing presents new opportunities across the spectrum of biomedical research. Global efforts are underway to develop practical guidance for implementation of data sharing and open data resources. These include the recent recommendation of ‘FAIR Data Principles’, which assert that if data is to have broad scientific value, then digital representations of that data should be Findable, Accessible, Interoperable and Reusable (FAIR). The spinal cord injury (SCI) research field has a long history of collaborative initiatives that include sharing of preclinical research models and outcome measures. In addition, new tools and resources are being developed by the SCI research community to enhance opportunities for data sharing and access. With this in mind, the National Institute of Neurological Disorders and Stroke (NINDS) at the National Institutes of Health (NIH) hosted a workshop on October 5–6, 2016 in Bethesda, MD, in collaboration with the Open Data Commons for Spinal Cord Injury (ODC-SCI) titled “Preclinical SCI Data: Creating a FAIR Share Community”. Workshop invitees were nominated by the workshop steering committee (co-chairs: ARF and VPL; members: AC, KDA, MSB, KF, LBJ, PGP, JMS), to bring together junior and senior level experts including preclinical and basic SCI researchers from academia and industry, data science and bioinformatics experts, investigators with expertise in other neurological disease fields, clinical researchers, members of the SCI community, and program staff representing federal and private funding agencies. The workshop and ODC-SCI efforts were sponsored by the International Spinal Research Trust (ISRT), the Rick Hansen Institute, Wings for Life, the Craig H. Neilsen Foundation and NINDS. The number of attendees was limited to ensure active participation and feedback in small groups. The goals were to examine the current landscape for data sharing in SCI research and provide a path to its future. Below are highlights from the workshop, including perspectives on the value of data sharing in SCI research, workshop participant perspectives and concerns, descriptions of existing resources and actionable directions for further engaging the SCI research community in a model that may be applicable to many other areas of neuroscience. This manuscript is intended to share these initial findings with the broader research community, and to provide talking points for continued feedback from the SCI field, as it continues to move forward in the age of data sharing. •Spinal cord injury researchers are open to data sharing, yet just over 10% of workshop attendees share their data online•Challenges in data sharing include logistics of data collection, storage requirements, and personnel training•Enabling scientific discovery and complying with journal and funder requirements are important incentives for data sharing•To promote data sharing broadly, a cultural shift is required not only for researchers but institutions and funding agencies•Next steps include creating data sharing guidelines and systems for data collection, citation, evaluation and annotatio

    Developing a data sharing community for spinal cord injury research

    No full text
    The rapid growth in data sharing presents new opportunities across the spectrum of biomedical research. Global efforts are underway to develop practical guidance for implementation of data sharing and open data resources. These include the recent recommendation of 'FAIR Data Principles', which assert that if data is to have broad scientific value, then digital representations of that data should be Findable, Accessible, Interoperable and Reusable (FAIR). The spinal cord injury (SCI) research field has a long history of collaborative initiatives that include sharing of preclinical research models and outcome measures. In addition, new tools and resources are being developed by the SCI research community to enhance opportunities for data sharing and access. With this in mind, the National Institute of Neurological Disorders and Stroke (NINDS) at the National Institutes of Health (NIH) hosted a workshop on October 5-6, 2016 in Bethesda, MD, in collaboration with the Open Data Commons for Spinal Cord Injury (ODC-SCI) titled "Preclinical SCI Data: Creating a FAIR Share Community". Workshop invitees were nominated by the workshop steering committee (co-chairs: ARF and VPL; members: AC, KDA, MSB, KF, LBJ, PGP, JMS), to bring together junior and senior level experts including preclinical and basic SCI researchers from academia and industry, data science and bioinformatics experts, investigators with expertise in other neurological disease fields, clinical researchers, members of the SCI community, and program staff representing federal and private funding agencies. The workshop and ODC-SCI efforts were sponsored by the International Spinal Research Trust (ISRT), the Rick Hansen Institute, Wings for Life, the Craig H. Neilsen Foundation and NINDS. The number of attendees was limited to ensure active participation and feedback in small groups. The goals were to examine the current landscape for data sharing in SCI research and provide a path to its future. Below are highlights from the workshop, including perspectives on the value of data sharing in SCI research, workshop participant perspectives and concerns, descriptions of existing resources and actionable directions for further engaging the SCI research community in a model that may be applicable to many other areas of neuroscience. This manuscript is intended to share these initial findings with the broader research community, and to provide talking points for continued feedback from the SCI field, as it continues to move forward in the age of data sharing
    corecore