9 research outputs found

    Genetic divergence among common bean cultivars from different races based on RAPD markers

    No full text
    The genetic divergence of 27 common bean (Phaseolus vulgaris L.) cultivars from different races was evaluated using RAPD markers. The association of this divergence with some indirect variability estimates obtained in field experiments was also assessed. Genetic distances were calculated using Sorensen-Dice's similarity coefficient, displayed in a dendrogram (UPGMA method), and by projection in two-dimensional space. Analysis of molecular variance (AMOVA) was used to evaluate the distribution of variance between and within domestication centers. RAPD marker genetic diversity within these centers was also calculated. The correlations between estimates of genetic distances obtained with RAPD markers and estimates of Mahalanobis' generalized distances, specific combination ability, and midparent heterosis obtained from morpho-agronomical traits were also determined. RAPD markers were efficient in separating cultivars according to domestication centers. However, only for Middle American domestication center was there good agreement between the grouping obtained and the proposed classification of races. The genetic divergence obtained with these markers was similar to that provided by morpho-agronomical traits. RAPD markers, however, were not efficient in predicting the specific combination ability and midparent heterosis expressed in crosses

    Variabilidade isoenzimática entre linhagens de amendoim resistentes à seca Isoenzimatic variability between peanut lines resistant to drought

    No full text
    O uso da técnica de eletroforese para separar múltiplas formas moleculares de enzimas tem sido bastante explorada na área biológica, cujas diferenças detectadas nos tecidos podem ser eficientemente usadas para diferenciação de cultivares em qualquer fase de seu desenvolvimento fenológico. Nesse trabalho, procedeu-se ao estudo da variabilidade isoenzimática em seis linhagens de amendoim resistentes à seca, com o objetivo de se verificar as possíveis relações da variação encontrada na base desses descritores com essa aptidão no amendoim. Estudaram-se folíolos da parte apical com 5 dias após a germinação, utilizando-se a técnica de eletroforese em gel de poliacrilamida (7%) sistema horizontal e contínuo de tampão. Os sistemas estudados foram fosfatase ácida (ACP), malato desidrogenase (MDH), leucina aminopeptidase (LAP), peroxidase (PO), e esterase (EST). A caracterização fenotípica dos genótipos permitiu a separação de quatro grupos para ACP, três para LAP, dois para MDH e seis para PO e EST. A partir da análise dos componentes principais dos grupos obtidos, observou-se que a cultivar IAC Tupã (sensível à seca) foi separada das demais, especialmente da cultivar resistente Senegal 55437.<br>The use of electrophoretic techniques to separate multiple molecular forms of enzymes has been used in the biological science, where differences in isozymes among tissues can be used efficiently on cultivar differentiation during any life cycle phase. In this paper, the variability of six drought resistant peanut lines was studied by isozymes analysis aiming to verify the possible relations between enzymatic descriptors and drought resistance character. Leaflets were analyzed by horizontal poliacrylamide gel electrophoresis technique and buffer continuos systems for the following systems: acid phosphatase (ACP), malate dehydrogenase (MDH), leucine aminopeptidase (LAP), peroxidase (POX) and esterase (EST). The phenotypic characterization of the genotypes allowed four group separations to ACP, three to LAP, two to MDH, and six to POX and EST. The IAC Tupã cultivar (drought sensitive) was differentiated to the others genotypes, specially as to Senegal 55 437 cultivar (drought resistant) by principal components analysis

    RBD and Spike DNA-Based Immunization in Rabbits Elicited IgG Avidity Maturation and High Neutralizing Antibody Responses against SARS-CoV-2

    No full text
    Neutralizing antibodies (nAbs) are a critical part of coronavirus disease 2019 (COVID-19) research as they are used to gain insight into the immune response to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections. Among the technologies available for generating nAbs, DNA-based immunization methods are an alternative to conventional protocols. In this pilot study, we investigated whether DNA-based immunization by needle injection in rabbits was a viable approach to produce a functional antibody response. We demonstrated that three doses of DNA plasmid carrying the gene encoding the full-length spike protein (S) or the receptor binding domain (RBD) of SARS-CoV-2 induced a time-dependent increase in IgG antibody avidity maturation. Moreover, the IgG antibodies displayed high cross neutralization by live SARS-CoV-2 and pseudoviruses neutralization assays. Thus, we established a simple, low cost and feasible DNA-based immunization protocol in rabbits that elicited high IgG avidity maturation and nAbs production against SARS-CoV-2, highlighting the importance of DNA-based platforms for developing new immunization strategies against SARS-CoV-2 and future emerging epidemics

    Comparison of similarity coefficients based on RAPD markers in the common bean

    No full text
    The alterations caused by eight different similarity coefficients were evaluated in the clustering and ordination of 27 common bean (Phaseolus vulgaris L.) cultivars analyzed by RAPD markers. The Anderberg, simple matching, Rogers and Tanimoto, Russel and Rao, Ochiai, Jaccard, Sorensen-Dice, and Ochiai II's coefficients were tested. Comparisons among the coefficients were made through correlation analysis of genetic distances obtained by the complement of these coefficients, dendrogram evaluation (visual inspection and consensus fork index - CIC), projection efficiency in a two-dimensional space, and groups formed by Tocher's optimization procedure. The employment of different similarity coefficients caused few alterations in cultivar classification, since correlations among genetic distances were larger than 0.86. Nevertheless, the different similarity coefficients altered the projection efficiency in a two-dimensional space and formed different numbers of groups by Tocher's optimization procedure. Among these coefficients, Russel and Rao's was the most discordant and the Sorensen-Dice was considered the most adequate due to a higher projection efficiency in a two-dimensional space. Even though few structural changes were suggested in the most different groups, these coefficients altered some relationships between cultivars with high genetic similarity.<br>Foram avaliadas as alterações provocadas por oito diferentes coeficientes de similaridade no agrupamento de 27 cultivares de feijão analisados por marcadores RAPD. Foram testados os coeficientes de Anderberg, simple matching, Rogers e Tanimoto, Russel e Rao, Ochiai, Jaccard, Sorensen-Dice e Ochiai II, sendo as comparações entre eles realizadas pelas correlações entre as distâncias genéticas obtidas pelo complemento destes coeficientes, e também pela avaliação dos dendrogramas (inspeção visual e índice CIC), eficiência da projeção no espaço bidimensional e grupos formados pelo método de otimização de Tocher. Os resultados evidenciaram que a utilização de diferentes coeficientes de similaridade provocou poucas alterações na classificação dos cultivares em grupos, sendo as correlações obtidas entre as distâncias genéticas maiores que 0,86. Apesar disso, foi observado que diferentes coeficientes alteraram a eficiência da projeção no espaço bidimensional e formaram número diferenciado de grupos pelo método de otimização de Tocher. Dentre estes, o de Russel e Rao apresentou resultados mais discordantes em relação aos demais e o de Sorensen-Dice foi considerado o mais adequado devido a uma maior eficiência de projeção no espaço bidimensional. Mesmo provocando poucas mudanças na estrutura dos grupos mais diferenciados, estes coeficientes alteraram alguns relacionamentos entre cultivares com alta similaridade genética

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore