9 research outputs found
Estrogen Treatment Reverses Prematurity-Induced Disruption in Cortical Interneuron Population
Development of cortical interneurons continues until the end of human pregnancy. Premature birth deprives the newborns from the supply of maternal estrogen and a secure intrauterine environment. Indeed, preterm infants suffer from neurobehavioral disorders. This can result from both preterm birth and associated postnatal complications, which might disrupt recruitment and maturation of cortical interneurons. We hypothesized that interneuron subtypes, including parvalbumin-positive (PV(+)), somatostatin-positive (SST(+)), calretinin-positive (CalR(+)), and neuropeptide Y-positive (NPY(+)) interneurons, were recruited in the upper and lower cortical layers in a distinct manner with advancing gestational age. In addition, preterm birth would disrupt the heterogeneity of cortical interneurons, which might be reversed by estrogen treatment. These hypotheses were tested by analyzing autopsy samples from premature infants and evaluating the effect of estrogen supplementation in prematurely delivered rabbits. The PV(+) and CalR(+) neurons were abundant, whereas SST(+) and NPY(+) neurons were few in cortical layers of preterm human infants. Premature birth of infants reduced the density of PV(+) or GAD67(+) neurons and increased SST(+) interneurons in the upper cortical layers. Importantly, 17 beta-estradiol treatment in preterm rabbits increased the number of PV(+) neurons in the upper cortical layers relative to controls at postnatal day 14 (P14) and P21 and transiently reduced SST population at P14. Moreover, protein and mRNA levels of Arx, a key regulator of cortical interneuron maturation and migration, were higher in estrogen-treated rabbits relative to controls. Therefore, deficits in PV(+) and excess of SST(+) neurons in premature newborns are ameliorated by estrogen replacement, which can be attributed to elevated Arx levels. Estrogen replacement might enhance neurodevelopmental outcomes in extremely preterm infants.SIGNIFICANCE STATEMENT Premature birth often leads to neurodevelopmental delays and behavioral disorders, which may be ascribed to disturbances in the development and maturation of cortical interneurons. Here, we show that preterm birth in humans is associated with reduced population of parvalbumin-positive (PV(+)) neurons and an excess of somatostatin-expressing interneurons in the cerebral cortex. More importantly, 17 beta-estradiol treatment increased the number of PV(+) neurons in preterm-born rabbits, which appears to be mediated by an elevation in the expression of Arx transcription factor. Hence the present study highlights prematurity-induced reduction in PV(+) neurons in human infants and reversal in their population by estrogen replacement in preterm rabbits. Because preterm birth drops plasma estrogen level 100-fold, estrogen replacement in extremely preterm infants might improve their developmental outcome and minimize neurobehavioral disorders
Recommended from our members
Cytokine responses to SARS-COV2 infection in mother-infant dyads: a systematic review and meta-analysis.
BACKGROUND: The COVID-19 pandemic has affected a significant number of pregnant women worldwide, but studies on immune responses have presented conflicting results. This study aims to systematically review cytokine profiles in pregnant women with SARS-CoV-2 infection and their infants to evaluate immune responses and potential transplacental transfer of cytokines. MATERIALS AND METHODS: A comprehensive search of 4 databases was conducted to identify relevant studies. Inclusion criteria included studies measuring individual cytokines in pregnant women and/or their neonates. Studies were evaluated for quality, and data were extracted for analysis. Meta-analyses were performed using the random-effects model. RESULTS: Seventeen studies met the inclusion criteria, including data from 748 pregnant women and 287 infants. More than three of these studies evaluated data of 20 cytokines in maternal serum, and data of 10 cytokines was available from cord blood samples. Only the serum level of CXCL10 was significantly up-regulated in SARS-CoV-2 positive pregnant women (n = 339) compared to SARS-CoV-2 negative pregnant women (n = 409). Subset analysis of maternal samples (n = 183) collected during the acute phase of COVID-19 infection showed elevated CXCL10 and IFN-γ. No significant differences in cytokine levels were found between cord blood samples collected from infants born to mothers with (n = 97) and without (n = 190) COVID-19 during gestation. Subset analysis of cord blood samples collected during the acute phase of maternal infection was limited by insufficient data. The heterogeneity among the studies was substantial. CONCLUSION: The findings suggest that maternal cytokines responses to SARS-CoV-2 infection during pregnancy are not significantly dysregulated, except for CXCL10 and IFN-γ during the acute phase of illness. No evidence of increased cytokine levels in cord blood samples was observed, although this could be impacted by the time period between initial maternal infection and cord blood collection. These results provide some reassurance to parents and healthcare providers but should be interpreted cautiously due to study variations and limitations
Recommended from our members
A Case of Neonatal Lupus Presenting with Myocardial Dysfunction in the Absence of Congenital Heart Block (CHB): Clinical Management and Brief Literature Review of Neonatal Cardiac Lupus
Neonatal lupus (NLE) is a rare acquired autoimmune disorder caused by transplacental passage of maternal autoantibodies to Sjogren's Syndrome A or B (SSA-SSB) autoantigens (Vanoni et al. in Clin Rev Allerg Immunol 53:469-476, 2017) which target fetal and neonatal tissues for immune destruction. The cardiac trademark of NLE is autoimmune heart block, which accounts for more than 80% of cases of complete atrioventricular heart block (AVB) in newborns with a structurally normal heart (Martin in Cardiol Young 24: 41-46, 2014). NLE presenting with cardiac alterations not involving rhythm disturbances are described in the literature, but they are rare. Here, we report a case of a neonate with high anti-SSA antibodies who developed severe ventricular dysfunction in the absence of rhythm abnormalities, endocardial fibroelastosis, and dilated cardiomyopathy (Trucco et al. in J Am Coll Cardiol 57:715-723, https://doi.org/10.1016/j.jacc.2010.09.044 , 2011), the most common cardiac presentations of NLE. The patient developed severe multiorgan dysfunction syndrome that required prolonged critical care support but fully recovered and was discharged home. We highlight the unusual clinical features of this NLE case and the importance of timely treatment of NLE allowing complete recovery of a critically ill neonate
Recommended from our members
Assessing for prenatal risk factors associated with infant neurologic morbidity using a multivariate analysis.
OBJECTIVE: To characterize the biochemical and demographic profiles of pregnant people with maternal immune activation (MIA) and identify the prenatal characteristics associated with neurologic morbidity in offspring. STUDY DESIGN: This was a retrospective cohort study of 602 mother-infant dyads with births between 2009 and 2010 in California. Multivariable logistic regression was used to build a MIA vulnerability profile including mid-pregnancy biochemical markers and maternal demographic characteristics, and its relationship with infant neurologic morbidity was examined. RESULTS: Of the 602 mother-infant dyads, 80 mothers and 61 infants had diagnoses suggestive of MIA and neurologic morbidity, respectively. Our model, including two demographic and seven biochemical characteristics, identified mothers with MIA with good performance (AUC:0.814; 95% CI:0.7-0.8). Three demographic and five inflammatory markers together identified 80% of infants with neurological morbidity (AUC:0.802, 95% CI:0.7-0.8). CONCLUSION: Inflammatory environment in mothers with pre-existing risk factors like obesity, poverty, and prematurity renders offspring more susceptible to neurologic morbidities
Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids.
Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia. We developed a "report card" of gene expression signatures across these distinct models to facilitate characterization of their responses across experimental models, perturbations, and disease conditions. Xenotransplantation of human microglia into cerebral organoids allowed us to characterize key transcriptional programs of developing microglia in vitro and reveal that microglia induce transcriptional changes in neural stem cells and decrease interferon signaling response genes. Microglia additionally accelerate the emergence of synchronized oscillatory network activity in brain organoids by modulating synaptic density
Modified full-face snorkel masks as reusable personal protective equipment for hospital personnel
Here we adapt and evaluate a full-face snorkel mask for use as personal protective equipment (PPE) for health care workers, who lack appropriate alternatives during the COVID-19 crisis in the spring of 2020. The design (referred to as Pneumask) consists of a custom snorkel-specific adapter that couples the snorkel-port of the mask to a rated filter (either a medical-grade ventilator inline filter or an industrial filter). This design has been tested for the sealing capability of the mask, filter performance, CO2 buildup and clinical usability. These tests found the Pneumask capable of forming a seal that exceeds the standards required for half-face respirators or N95 respirators. Filter testing indicates a range of options with varying performance depending on the quality of filter selected, but with typical filter performance exceeding or comparable to the N95 standard. CO2 buildup was found to be roughly equivalent to levels found in half-face elastomeric respirators in literature. Clinical usability tests indicate sufficient visibility and, while speaking is somewhat muffled, this can be addressed via amplification (Bluetooth voice relay to cell phone speakers through an app) in noisy environments. We present guidance on the assembly, usage (donning and doffing) and decontamination protocols. The benefit of the Pneumask as PPE is that it is reusable for longer periods than typical disposable N95 respirators, as the snorkel mask can withstand rigorous decontamination protocols (that are standard to regular elastomeric respirators). With the dire worldwide shortage of PPE for medical personnel, our conclusions on the performance and efficacy of Pneumask as an N95-alternative technology are cautiously optimistic