572 research outputs found

    Marine-Nonmarine Relationships in the Cenozoic Section of California

    Get PDF
    Highly fossiliferous marine sediments of Cenozoic age are widely distributed in the coastal parts of central and southern California, as well as in the Sacramento-San Joaquin Valley region farther inland. Even more widespread are nonmarine, chiefly terrestrial, sequences of Cenozoic strata, many of which contain vertebrate faunas characterized by a dominance of mammalian forms. These strata are most abundant in the Mojave Desert region and in the interior parts of areas that lie nearer the coast. Marine and nonmarine strata are in juxtaposition or interfinger with one another at many places, especially in the southern Coast Ranges and the San Joaquin basin to the east, in the Transverse Ranges and adjacent basins, and in several parts of the Peninsular Range region and the Coachella-Imperial Valley to the east. These occurrences of closely related marine and nonmarine deposits permit critical comparisons between the Pacific Coast mammalian (terrestrial) and invertebrate (marine) chronologies, and it is with these comparisons-examined in the light of known stratigraphic relations-that this paper is primarily concerned. The writers have drawn freely upon the published record for geologic and paleontologic data. In addition, Durham has reviewed many of the invertebrate faunas and has checked the field relations of marine strata in parts of the Ventura and Soledad basins, the Tejon Hills, and the Cammatta Ranch; Jahns has studied new vertebrate material from the Soledad basin and has mapped this area and critical areas in the vicinity of San Diego, in the Ventura basin, and in the Caliente Range; and Savage has made a detailed appraisal of the vertebrate assemblages, and has mapped critical areas in the Tejon Hills. The areas and localities that have been most carefully scrutinized are shown in figure 1. The manuscript was reviewed in detail by G. Edward Lewis of the U. S. Geological Survey, who made numerous comments and suggestions that resulted in considerable improvement. It should be noted that his views are not wholly compatible with some of those expressed in this paper, and that his critical appraisal thus was particularly helpful

    The rodent research animal holding facility as a barrier to environmental contamination

    Get PDF
    The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent

    Marine-Nonmarine Relationships in the Cenozoic Section of California

    Get PDF
    Highly fossiliferous marine sediments of Cenozoic age are widely distributed in the coastal parts of central and southern California, as well as in the Sacramento-San Joaquin Valley region farther inland. Even more widespread are nonmarine, chiefly terrestrial, sequences of Cenozoic strata, many of which contain vertebrate faunas characterized by a dominance of mammalian forms. These strata are most abundant in the Mojave Desert region and in the interior parts of areas that lie nearer the coast. Marine and nonmarine strata are in juxtaposition or interfinger with one another at many places, especially in the southern Coast Ranges and the San Joaquin basin to the east, in the Transverse Ranges and adjacent basins, and in several parts of the Peninsular Range region and the Coachella-Imperial Valley to the east. These occurrences of closely related marine and nonmarine deposits permit critical comparisons between the Pacific Coast mammalian (terrestrial) and invertebrate (marine) chronologies, and it is with these comparisons-examined in the light of known stratigraphic relations-that this paper is primarily concerned. The writers have drawn freely upon the published record for geologic and paleontologic data. In addition, Durham has reviewed many of the invertebrate faunas and has checked the field relations of marine strata in parts of the Ventura and Soledad basins, the Tejon Hills, and the Cammatta Ranch; Jahns has studied new vertebrate material from the Soledad basin and has mapped this area and critical areas in the vicinity of San Diego, in the Ventura basin, and in the Caliente Range; and Savage has made a detailed appraisal of the vertebrate assemblages, and has mapped critical areas in the Tejon Hills. The areas and localities that have been most carefully scrutinized are shown in figure 1. The manuscript was reviewed in detail by G. Edward Lewis of the U. S. Geological Survey, who made numerous comments and suggestions that resulted in considerable improvement. It should be noted that his views are not wholly compatible with some of those expressed in this paper, and that his critical appraisal thus was particularly helpful

    Antibaryons in massive heavy ion reactions: Importance of potentials

    Get PDF
    In the framework of RQMD we investigate antiproton observables in massive heavy ion collisions at AGS energies and compare to preliminary results of the E878 collaboration. We focus here on the considerable influence of the *real* part of an antinucleon--nucleus optical potential on the antiproton momentum spectra

    Bacterial Cholangitis, Cholecystitis, or both in Dogs

    Get PDF
    BACKGROUND: Bacterial cholangitis and cholecystitis are rarely reported, poorly characterized diseases in the dog. OBJECTIVES: To characterize the clinical features of these conditions. ANIMALS: Twenty‐seven client‐owned dogs with bacterial cholangitis, cholecystitis, or both. METHODS: Multicenter, retrospective cases series of dogs with bacterial cholangitis, cholecystitis, or both, presenting January 2000 to June 2011 to 4 Veterinary Schools in Ireland/United Kingdom. Interrogation of hospital databases identified all cases with the inclusion criteria; histopathologically confirmed cholangitis or cholecystitis and bile culture/cytology results supporting a bacterial etiology. RESULTS: Twenty‐seven dogs met the inclusion criteria with approximately 460 hepatitis cases documented over the same study period. Typical clinical pathology findings were increases in liver enzyme activities (25/26), hyperbilirubinemia (20/26), and an inflammatory leukogram (21/24). Ultrasound findings, although nonspecific, aided decision‐making in 25/26 cases. The most frequent hepatobiliary bacterial isolates were Escherichia coli (n = 17; 16 cases), Enterococcus spp. (n = 8; 6 cases), and Clostridium spp. (n = 5; 5 cases). Antimicrobial resistance was an important feature of aerobic isolates; 10/16 E. coli isolates resistant to 3 or more antimicrobial classes. Biliary tract rupture complicated nearly one third of cases, associated with significant mortality (4/8). Discharged dogs had a guarded to fair prognosis; 17/18 alive at 2 months, although 5/10 re‐evaluated had persistent liver enzyme elevation 2–12 months later. CONCLUSION AND CLINICAL SIGNIFICANCE: Bacterial cholangitis and cholecystitis occur more frequently than suggested by current literature and should be considered in dogs presenting with jaundice and fever, abdominal pain, or an inflammatory leukogram or with ultrasonographic evidence of gallbladder abnormalities

    Covariance of Antiproton Yield and Source Size in Nuclear Collisions

    Full text link
    We confront for the first time the widely-held belief that combined event-by-event information from quark gluon plasma signals can reduce the ambiguity of the individual signals. We illustrate specifically how the measured antiproton yield combined with the information from pion-pion HBT correlations can be used to identify novel event classes.Comment: 8 pages, 5 figures, improved title, references and readability; results unchange

    Atp bioluminescence for rapid and selective detection of bacteria and yeasts in wine

    Get PDF
    Microbial contamination may represent a loss of money for wine producers as several defects can arise due to a microorganism’s growth during storage. The aim of this study was to implement a bioluminescence assay protocol to rapidly and simultaneously detect bacteria and yeasts in wines. Different wines samples were deliberately contaminated with bacteria and yeasts at different concentrations and filtered through two serial filters with decreasing mesh to separate bacteria and yeasts. These were resuscitated over 24 h on selective liquid media and analyzed by bioluminescence assay. ATP measurements discriminated the presence of yeasts and bacteria in artificially contaminated wine samples down to 50 CFU/L of yeasts and 1000 CFU/L of bacteria. The developed protocol allowed to detect, rapidly (24 h) and simultaneously, bacteria and yeasts in different types of wines. This would be of great interest for industries, for which an early detection and discrimination of microbial contaminants would help in the decision‐making proces

    Relationship between food waste, diet quality, and environmental sustainability

    Get PDF
    Improving diet quality while simultaneously reducing environmental impact is a critical focus globally. Metrics linking diet quality and sustainability have typically focused on a limited suite of indicators, and have not included food waste. To address this important research gap, we examine the relationship between food waste, diet quality, nutrient waste, and multiple measures of sustainability: use of cropland, irrigation water, pesticides, and fertilizers. Data on food intake, food waste, and application rates of agricultural amendments were collected from diverse US government sources. Diet quality was assessed using the Healthy Eating Index-2015. A biophysical simulation model was used to estimate the amount of cropland associated with wasted food. This analysis finds that US consumers wasted 422g of food per person daily, with 30 million acres of cropland used to produce this food every year. This accounts for 30% of daily calories available for consumption, one-quarter of daily food (by weight) available for consumption, and 7% of annual cropland acreage. Higher quality diets were associated with greater amounts of food waste and greater amounts of wasted irrigation water and pesticides, but less cropland waste. This is largely due to fruits and vegetables, which are health-promoting and require small amounts of cropland, but require substantial amounts of agricultural inputs. These results suggest that simultaneous efforts to improve diet quality and reduce food waste are necessary. Increasing consumers’ knowledge about how to prepare and store fruits and vegetables will be one of the practical solutions to reducing food waste

    Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases

    Get PDF
    Illumination changes elicit modifications of thylakoid proteins and reorganization of the photosynthetic machinery. This involves, in the short term, phosphorylation of photosystem II (PSII) and light-harvesting (LHCII) proteins. PSII phosphorylation is thought to be relevant for PSII turnover1,2, whereas LHCII phosphorylation is associated with the relocation of LHCII and the redistribution of excitation energy (state transitions) between photosystems3,4. In the long term, imbalances in energy distribution between photosystems are counteracted by adjusting photosystem stoichiometry5,6. In the green alga Chlamydomonas and the plant Arabidopsis, state transitions require the orthologous protein kinases STT7 and STN7, respectively7,8. Here we show that in Arabidopsis a second protein kinase, STN8, is required for the quantitative phosphorylation of PSII core proteins. However, PSII activity under high-intensity light is affected only slightly in stn8 mutants, and D1 turnover is indistinguishable from the wild type, implying that reversible protein phosphorylation is not essential for PSII repair. Acclimation to changes in light quality is defective in stn7 but not in stn8 mutants, indicating that short-term and long-term photosynthetic adaptations are coupled. Therefore the phosphorylation of LHCII, or of an unknown substrate of STN7, is also crucial for the control of photosynthetic gene expressio
    • 

    corecore