219 research outputs found

    Under School Colors: Private University Police as State Actors Under § 1983

    Get PDF
    Under 42 U.S.C. § 1983, individuals may sue those who violate their constitutional rights while acting under color of state law. The Supreme Court has held that private actors may act under color of state law, and may be sued under § 1983 in some circumstances. However, courts have not been consistent in determining whether private university police forces act under color of state law. Private universities often maintain police forces that are given extensive police powers by state statutes but are controlled by private entities. Some courts have looked directly to the state statutes that delegate police power, but others have maintained a more fact-specific inquiry. The state enabling statutes themselves vary in their terms, but not their effects, and are thus partially responsible for this inconsistency. This Note proposes a model statute framework for delegating powers to private university police forces. Such a framework would better allow courts to apply the § 1983 color of law test consistently. A model statute would also clarify the role of campus police forces and would require minimal change in the operation of private campus police forces. The resulting consistency would ensure that no citizen is deprived of a remedy for a violation of constitutional rights

    Under School Colors: Private University Police as State Actors Under § 1983

    Get PDF
    Under 42 U.S.C. § 1983, individuals may sue those who violate their constitutional rights while acting under color of state law. The Supreme Court has held that private actors may act under color of state law, and may be sued under § 1983 in some circumstances. However, courts have not been consistent in determining whether private university police forces act under color of state law. Private universities often maintain police forces that are given extensive police powers by state statutes but are controlled by private entities. Some courts have looked directly to the state statutes that delegate police power, but others have maintained a more fact-specific inquiry. The state enabling statutes themselves vary in their terms, but not their effects, and are thus partially responsible for this inconsistency. This Note proposes a model statute framework for delegating powers to private university police forces. Such a framework would better allow courts to apply the § 1983 color of law test consistently. A model statute would also clarify the role of campus police forces and would require minimal change in the operation of private campus police forces. The resulting consistency would ensure that no citizen is deprived of a remedy for a violation of constitutional rights

    A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations

    Get PDF
    Mountain regions are globally important areas for biodiversity but are subject to multiple human-induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high-elevation, mountain specialist and generalist species, based on the proportion oftheir breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long-term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta-analysis did not find a consistent direction in elevation change. A meta-analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy-makers should influence legislation to develop efficient agri-environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.Peer reviewe

    Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda

    Get PDF
    Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications.Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications

    Revisiting global trends in freshwater insect biodiversity

    Get PDF
    A recent global meta-analysis reported a decrease in terrestrial but increase in freshwater insect abundance and biomass (van Klink et al., Science 368, p. 417). The authors suggested that water quality has been improving, thereby challenging recent reports documenting drastic global declines in freshwater biodiversity. We raise two major concerns with the meta-analysis and suggest that these account for the discrepancy with the declines reported elsewhere. First, total abundance and biomass alone are poor indicators of the status of freshwater insect assemblages, and the observed differences may well have been driven by the replacement of sensitive species with tolerant ones. Second, many of the datasets poorly represent global trends and reflect responses to local conditions or nonrandom site selection. We conclude that the results of the meta-analysis should not be considered indicative of an overall improvement in the condition of freshwater ecosystems.FH and GK are supported through the project“Species protection through environmental friendly lighting”funded bythe Federal Agency for Nature Conservation (BfN) within the framework of the Federal Programme for BiologicalDiversity with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).AM acknowledges funding through US NSF Macrosystems Biology Program (grant no. 1442595), and SD by the LeibnizCompetition (J45/2018). The authors are grateful to the reviewers and the editor for their comments, which helpedimprove the text. Open access funding enabled and organized by Projekt DEA

    Water-Membrane Partition Thermodynamics of an Amphiphilic Lipopeptide: An Enthalpy-Driven Hydrophobic Effect

    Get PDF
    To shed light on the driving force for the hydrophobic effect that partitions amphiphilic lipoproteins between water and membrane, we carried out an atomically detailed thermodynamic analysis of a triply lipid modified H-ras heptapeptide anchor (ANCH) in water and in a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Combining molecular mechanical and continuum solvent approaches with an improved technique for solute entropy calculation, we obtained an overall transfer free energy of ∼−13 kcal mol−1. This value is in qualitative agreement with free energy changes derived from a potential of mean force calculation and indirect experimental observations. Changes in free energies of solvation and ANCH conformational reorganization are unfavorable, whereas ANCH-DMPC interactions—especially van der Waals—favor insertion. These results are consistent with an enthalpy-driven hydrophobic effect, in accord with earlier calorimetric data on the membrane partition of other amphiphiles. Furthermore, structural and entropic analysis of molecular dynamics-generated ensembles suggests that conformational selection may play a hitherto unappreciated role in membrane insertion of lipid-modified peptides and proteins

    ChemInform Abstract: ENVIRONMENTAL ASPECTS OF COAL GASIFICATION

    No full text

    Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data.

    No full text
    corecore