35 research outputs found

    Open versus laparoscopically-assisted oesophagectomy for cancer: a multicentre randomised controlled phase III trial - the MIRO trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Open transthoracic oesophagectomy is the standard treatment for infracarinal resectable oesophageal carcinomas, although it is associated with high mortality and morbidity rates of 2 to 10% and 30 to 50%, respectively, for both the abdominal and thoracic approaches. The worldwide popularity of laparoscopic techniques is based on promising results, including lower postoperative morbidity rates, which are related to the reduced postoperative trauma. We hypothesise that the laparoscopic abdominal approach (laparoscopic gastric mobilisation) in oesophageal cancer surgery will decrease the major postoperative complication rate due to the reduced surgical trauma.</p> <p>Methods/Design</p> <p>The MIRO trial is an open, controlled, prospective, randomised multicentre phase III trial. Patients in study arm A will receive laparoscopic-assisted oesophagectomy, i.e., a transthoracic oesophagectomy with two-field lymphadenectomy and laparoscopic gastric mobilisation. Patients in study arm B will receive the same procedure, but with the conventional open abdominal approach. The primary objective of the study is to evaluate the major postoperative 30-day morbidity. Secondary objectives are to assess the overall 30-day morbidity, 30-day mortality, 30-day pulmonary morbidity, disease-free survival, overall survival as well as quality of life and to perform medico-economic analysis. A total of 200 patients will be enrolled, and two safety analyses will be performed using 25 and 50 patients included in arm A.</p> <p>Discussion</p> <p>Postoperative morbidity remains high after oesophageal cancer surgery, especially due to major pulmonary complications, which are responsible for 50% of the postoperative deaths. This study represents the first randomised controlled phase III trial to evaluate the benefits of the minimally invasive approach with respect to the postoperative course and oncological outcomes in oesophageal cancer surgery.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00937456">NCT00937456</a> (ClinicalTrials.gov)</p

    Neurobiol Aging

    Get PDF
    GRN mutations are frequent causes of familial frontotemporal degeneration. Although there is no clear consensual threshold, plasma progranulin levels represent an efficient biomarker for predicting GRN mutations when decreased. We evaluated plasma levels to determine whether it could also predict age at onset, clinical phenotype, or disease progression in 160 GRN carriers. Importantly, progranulin levels were influenced by gender, with lower levels in male than in female patients in our study. Although we found no correlation with age at onset or with clinical phenotype, we confirmed that decreased level predicts GRN mutations, even in presymptomatic carriers more than four decades before disease onset. We also provided first evidence for the stability of levels throughout longitudinal trajectory in carriers, over a 4-year time span. Finally, we confirmed that progranulin levels constitute a reliable, cost-effective marker, suitable as a screening tool in patients with familial frontotemporal degeneration, and more broadly in patients without family history or with atypical presentations who are less likely to be referred for molecular diagnosis

    Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations

    Get PDF
    Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV\ue2\u80\u93neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes

    Variations d&#039;encodage et faux souvenirs en rappel

    No full text
    This article presents two experiments using the DRM paradigm and examining the effects of variations in the depth of processing on the occurrence of false memories at recall. Contrary to what is generally observed, the results of the first experiment indicate that deep processing, maximizing the possibility of implication of distinctive characteristics, leads to an increase of the recall of hits without increasing the recall of lures. The second experiment uses instructions of inclusion requiring participants to recall not only the presented items but also all the words that were activated in memory both during the encoding and retrieval phases. These instructions, which deactivate the strategy of control of the source, support the notion that deep processing favours the activation of distinctive characteristics that facilitate the process of discrimination during the identification of the source. (PsycINFO Database Record (c) 2013 APA, all rights reserved). (journal abstract
    corecore