31 research outputs found

    University level second language readers’ online reading and comprehension strategies

    Get PDF

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    data set for "3D calcite heterostructures for dynamic and deformable mineralized matrices"

    No full text
    data set for "3D calcite heterostructures for dynamic and deformable mineralized matrices

    Bioinspired Morphogenesis of Highly Intricate and Symmetric Silica Nanostructures

    No full text
    Biosilification is of interest due to its capability to produce a highly intricate structure under environmentally friendly conditions. Despite the considerable effort that has been devoted toward biomimetic silification, the synthesis of highly complex silica structures, as found in the structures of diatom cell walls, is still in its infancy. Here, we report the bioinspired fabrication of well-organized and symmetric silica nanostructured networks, involving phase separation and silicic acid polymerization processes, in analogy to the morphogenesis of diatom cell walls. Our approach exploits self-assembled silica spheres as a self-source of the silicic acids as well as scaffolds that, interplayed with droplets of ammonium hexafluorosilicate, direct the site-specific silification. Moreover, we have achieved multiple morphological evolutions with subtle changes in the process, which demonstrates exquisite levels of control over silica morphogenesis

    Direct Synthesis of Graphene Meshes and Semipermanent Electrical Doping

    No full text
    Here we describe a new method for the direct patterned synthesis of graphene meshes on Cu foils that use self-assembled silica sphere arrays as growth masks. Structural analyses based on electron microscopy and Raman spectroscopy showed that the graphene meshes are mostly single- or double-layer necks with empty holes that have abrupt edges. On the basis of experimental observations, we proposed the model illustrating the dissociation of carbon atoms at the Cu/silica interface through catalytic hydrogenation of the graphene lattice. Moreover, our approach can minimize problems associated with the graphene etching process, including contamination and exposure to reactive plasma. This enables stable electronic doping through covalent C–N bonds at the edges of graphene meshes
    corecore