13 research outputs found
Future large hydropower dams impact global freshwater megafauna
Dam construction comes with severe social, economic and ecological impacts. From an ecological point of view, habitat types are altered and biodiversity is lost. Thus, to identify areas that deserve major attention for conservation, existing and planned locations for (hydropower) dams were overlapped, at global extent, with the contemporary distribution of freshwater megafauna species with consideration of their respective threat status. Hydropower development will disproportionately impact areas of high freshwater megafauna richness in South America, South and East Asia, and the Balkan region. Sub-catchments with a high share of threatened species are considered to be most vulnerable; these are located in Central America, Southeast Asia and in the regions of the Black and Caspian Sea. Based on this approach, planned dam locations are classified according to their potential impact on freshwater megafauna species at different spatial scales, attention to potential conflicts between climate mitigation and biodiversity conservation are highlighted, and priorities for freshwater management are recommended
Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda
Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications.Aim Highly complex interactions between the hydrosphere and biosphere, as well as multifactorial relationships, characterize the interconnecting role of streams and rivers between different elements of a landscape. Applying species distribution models (SDMs) in these ecosystems requires special attention because rivers are linear systems and their abiotic and biotic conditions are structured in a linear fashion with significant influences from upstream/downstream or lateral influences from adjacent areas. Our aim was to develop a modelling framework for benthic invertebrates in riverine ecosystems and to test our approach in a data-rich study catchment. Location We present a case study of a 9-km section of the lowland Kielstau River located in northern Germany. Methods We linked hydrological, hydraulic and species distribution models to predict the habitat suitability for the bivalve Sphaerium corneum in a riverine system. The results generated by the hydrological model served as inputs into the hydraulic model, which was used to simulate the resulting water levels, velocities and sediment discharge within the stream channel. Results The ensemble model obtained good evaluation scores (area under the receiver operating characteristic curve 0.96; kappa 0.86; true skill statistic 0.95; sensitivity 86.14; specificity 85.75). Mean values for variables at the sampling sites were not significantly different from the values at the predicted distribution (MannWhitney U-test P > 0.05). High occurrence probabilities were predicted in the downstream half of the 9-km section of the Kielstau. The most important variable for the model was sediment discharge (contributing 40%), followed by water depth (30%), flow velocity (19%) and stream power (11%). Main conclusions The hydrological and hydraulic models are able to produce predictors, acting at different spatial scales, which are known to influence riverine organisms; which, in turn, are used by the SDMs as input. Our case study yielded good results, which corresponded well with ecological knowledge about our study organism. Although this method is feasible for making projections of habitat suitability on a local scale (here: a reach in a small catchment), we discuss remaining challenges for future modelling approaches and large-scale applications
The three Rs of river ecosystem resilience : Resources, recruitment, and refugia
This review article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionResilience in river ecosystems requires that organisms must persist in the face of highly dynamic hydrological and geomorphological variations. Disturbance events such as floods and droughts are postulated to shape life history traits that support resilience, but river management and conservation would benefit from greater understanding of the emergent effects in communities of river organisms.
We unify current knowledge of taxonomic-, phylogenetic-, and trait-based aspects of river communities that might aid the identification and quantification of resilience mechanisms. Temporal variations in river productivity, physical connectivity, and environmental heterogeneity resulting from floods and droughts are highlighted as key characteristics that promote resilience in these dynamic ecosystems.
Three community-wide mechanisms that underlie resilience are (a) partitioning (competition/facilitation) of dynamically varying resources, (b) dispersal, recolonization, and recruitment promoted by connectivity, and (c) functional redundancy in communities promoted by resource heterogeneity and refugia. Along with taxonomic and phylogenetic identity, biological traits related to feeding specialization, dispersal ability, and habitat specialization mediate organism responses to disturbance. Measures of these factors might also enable assessment of the relative contributions of different mechanisms to community resilience.
Interactions between abiotic drivers and biotic aspects of resource use, dispersal, and persistence have clear implications for river conservation and management. To support these management needs, we propose a set of taxonomic, phylogenetic, and life-history trait metrics that might be used to measure resilience mechanisms. By identifying such indicators, our proposed framework can enable targeted management strategies to adapt river ecosystems to global change
Recommended from our members
Rethinking megafauna
Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are “megafauna”? Here we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyze associated terminology in the scientific literature. Second, we conduct a survey among ecologists and paleontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: “keystone megafauna” and “functional megafauna”, with its variant “apex megafauna”. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage
scientists to unambiguously define how they use the term “megafauna” and to present the logic underpinning their definition
A global agenda for advancing freshwater biodiversity research
Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation
Streamflow-based evaluation of climate model sub-selection methods
The assessment of climate change and its impact relies on the ensemble of models available and/or sub-selected. However, an assessment of the validity of simulated climate change impacts is not straightforward because historical data is commonly used for bias-adjustment, to select ensemble members or to define a baseline against which impacts are compared—and, naturally, there are no observations to evaluate future projections. We hypothesize that historical streamflow observations contain valuable information to investigate practices for the selection of model ensembles. The Danube River at Vienna is used as a case study, with EURO-CORDEX climate simulations driving the COSERO hydrological model. For each selection method, we compare observed to simulated streamflow shift from the reference period (1960–1989) to the evaluation period (1990–2014). Comparison against no selection shows that an informed selection of ensemble members improves the quantification of climate change impacts. However, the selection method matters, with model selection based on hindcasted climate or streamflow alone is misleading, while methods that maintain the diversity and information content of the full ensemble are favorable. Prior to carrying out climate impact assessments, we propose splitting the long-term historical data and using it to test climate model performance, sub-selection methods, and their agreement in reproducing the indicator of interest, which further provide the expectable benchmark of near- and far-future impact assessments. This test is well-suited to be applied in multi-basin experiments to obtain better understanding of uncertainty propagation and more universal recommendations regarding uncertainty reduction in hydrological impact studies
Community-environment relationships of riverine invertebrate communities in central Chinese streams
Chinese rivers are both highly biodiverse and highly under pressure, hence an urgent need exists to understand ecological drivers and disentangle different scales of stressors to support water management. Our aims were to (1) determine the most influential variables for benthic invertebrate occurrence, (2) compare results related to communities as opposed to metrics and (3) examine the role of spatial scales with relevance to management. Benthic invertebrate sampling was performed at 37 sites in selected tributaries of the middle reaches of the Yangtze, covering an environmental gradient with a focus on organic pollution (stratified sampling design). Ten metrics commonly used in biomonitoring were derived and analysed in parallel to assemblage data. Environmental variables covered 74 parameters from three different spatial scales, namely local, reach and catchment scale. We ran a CCA with each of the three subsets to find out the significant determining/explanatory variables, followed by pCCA and pRDA (for metric data) with these variables with forward selection to determine single variables important for each subset; we further used variation portioning for benthic invertebrate data. A high percentage of overall variability (70 %) of the assemblage structure was explained, with catchment- and local-scale variables being almost equally important. Small-scale variables tended to be more important than large-scale variables for the metric-based approach but not for the assemblage approach. Our results emphasise the need for spatially explicit regional studies in freshwater systems and suggest testing multi-metric assessment approaches to tackle water management and environmental health questions in China
Integrating catchment properties in small scale species distribution models of stream macroinvertebrates
Species distribution models are increasingly applied to freshwater ecosystems. Most applications use large scales, coarse resolutions and anthropocentric modelling extents, thus not being able to consider important environmental predictors and ecological processes detectable within a catchment and at finer scales. Moreover, high resolution predictions of species distribution in streams can help improve our understanding of how environmental variables within a catchment affect the distribution of stream macroinvertebrates. We built models at a resolution of 25 m x 25 m for a 488 km(2) catchment in northern Germany to determine whether the spatial approach in which environmental predictors are implemented in the model affects the overall performance. We used predictors from four different categories relevant to freshwater ecosystems: bioclimatic, topographic, hydrologic and land use. Two spatial approaches were tested: a local one, or grid based and a cumulative for the upstream area, or subcatchment specific. Models were evaluated in terms of model performance and accuracy in order to identify the approach best suited for each category, as well as the most important predictor in each. In the case of the land use category, the subcatchment approach made a significant difference, increasing performance. A final model, calibrated with the selected predictors, resulted in the highest model performance and accuracy. Our results indicate that species distribution models perform well and are accurate at high resolutions, within small catchments. We conclude that catchment wide models, especially when using predictors from multiple categories, have the potential to significantly improve modelling framework of species distribution in freshwater ecosystems. The information produced by accurate, small scale, species distribution models can guide managers and conservation practitioners, by predicting the effects of management decisions within a catchment. We suggest that highly resolved predictors be applied in models using the catchment approach. (C) 2014 Elsevier B.V. All rights reserved.Species distribution models are increasingly applied to freshwater ecosystems. Most applications use large scales, coarse resolutions and anthropocentric modelling extents, thus not being able to consider important environmental predictors and ecological processes detectable within a catchment and at finer scales. Moreover, high resolution predictions of species distribution in streams can help improve our understanding of how environmental variables within a catchment affect the distribution of stream macroinvertebrates. We built models at a resolution of 25 m x 25 m for a 488 km(2) catchment in northern Germany to determine whether the spatial approach in which environmental predictors are implemented in the model affects the overall performance. We used predictors from four different categories relevant to freshwater ecosystems: bioclimatic, topographic, hydrologic and land use. Two spatial approaches were tested: a local one, or grid based and a cumulative for the upstream area, or subcatchment specific. Models were evaluated in terms of model performance and accuracy in order to identify the approach best suited for each category, as well as the most important predictor in each. In the case of the land use category, the subcatchment approach made a significant difference, increasing performance. A final model, calibrated with the selected predictors, resulted in the highest model performance and accuracy. Our results indicate that species distribution models perform well and are accurate at high resolutions, within small catchments. We conclude that catchment wide models, especially when using predictors from multiple categories, have the potential to significantly improve modelling framework of species distribution in freshwater ecosystems. The information produced by accurate, small scale, species distribution models can guide managers and conservation practitioners, by predicting the effects of management decisions within a catchment. We suggest that highly resolved predictors be applied in models using the catchment approach. (C) 2014 Elsevier B.V. All rights reserved
Molecular phylogeny of Himalopsyche (Trichoptera, Rhyacophilidae)
Species of the genus Himalopsyche (Trichoptera, Rhyacophilidae) inhabit alpine to montane environments in Central and East Asia and North America. Diversity of the genus is concentrated primarily in the Himalayas and surrounding mountain ranges. Phylogenetic hypotheses have hitherto been proposed based on morphological data. Here, we present the first molecular phylogeny of Himalopsyche based on six gene fragments, using three methods of phylogenetic inference. Based on the phylogenetic analyses, we re-evaluated species groups suggested by previous authors based on adult male morphology. We found that the previously defined groups are largely supported by molecular evidence as well as larval and adult morphology. However, we modify the species groups so that Himalopsyche phryganea and Himalopsyche lepcha constitute monotypic groups, and so that the tibetana group and anomala group sensu Schmid & Botosaneanu are merged to a single group, here defined as the tibetana group. Thus, we propose that Himalopsyche can be divided into five groups: kuldschensis group, lepcha group, navasi group, phryganea group, and tibetana group. We also provide a biogeographic synthesis of Himalopsyche distributions.</p