64 research outputs found

    Differences in receptivity to gastrointestinal infections with nematodes in dairy ewes: Influence of age and of the level of milk production

    Get PDF
    Resistance to anthelmintics in populations of gastrointestinal nematodes is a major concern in small ruminants. One solution to limit the spread of anthelmintic resistance is to apply treatments selectively by targeting the most susceptible animals within a flock. In dairy goats, previous studies have shown that, within a flock, goats in first lactation and those with high level of milk production were highly receptive to nematode infections. These results provided the rationale for targeted treatments. In dairy ewes, such epidemiological information on possible factors modulating the susceptibility to parasitism were still lacking. The objective of the current study was therefore to examine differences in the level of parasite infection and in the pathophysiological consequences in dairy ewes, depending on the age or on the level of milk production. In three farms, parasite egg excretion, and the serum concentrations of pepsinogen and inorganic phosphate were compared on one hand between primiparous and multiparous ewes; on the other hand, between ewes with the highest and the lowest level of milk production, within a cohort of 3–5-year old animals. Overall, the results did not indicate significant differences for both either the parasitological or pathophysiological measurements depending on the level of milk production. In contrast, significant differences were found according to age, indicating higher levels of infections in the primiparous ewes than in the multiparous ones and suggesting that this category of animals represents a particular parasitic risk within a flock

    Risk of introduction of lumpy skin disease in France by the import of vectors in animal trucks

    Get PDF
    BACKGROUND: The lumpy skin disease virus (LSDV) is a dsDNA virus belonging to the Poxviridae family and the Capripoxvirus genus. Lumpy skin diseases (LSD) is a highly contagious transboundary disease in cattle producing major economic losses. In 2014, the disease was first reported in the European Union (in Cyprus); it was then reported in 2015 (in Greece) and has spread through different Balkan countries in 2016. Indirect vector transmission is predominant at small distances, but transmission between distant herds and between countries usually occurs through movements of infected cattle or through vectors found mainly in animal trucks. METHODS AND PRINCIPAL FINDINGS: In order to estimate the threat for France due to the introduction of vectors found in animal trucks (cattle or horses) from at-risk countries (Balkans and neighbours), a quantitative import risk analysis (QIRA) model was developed according to the international standard. Using stochastic QIRA modelling and combining experimental/field data and expert opinion, the yearly risk of LSDV being introduced by stable flies (Stomoxys calcitrans), that travel in trucks transporting animals was between 6 x 10-5 and 5.93 x 10-3 with a median value of 89.9 x 10-5; it was mainly due to the risk related to insects entering farms in France from vehicles transporting cattle from the at-risk area. The risk related to the transport of cattle going to slaughterhouses or the transport of horses was much lower (between 2 x 10-7 and 3.73 x 10-5 and between 5 x 10-10 and 3.95 x 10-8 for cattle and horses, respectively). The disinsectisation of trucks transporting live animals was important to reduce this risk. CONCLUSION AND SIGNIFICANCE: The development of a stochastic QIRA made it possible to quantify the risk of LSD being introduced in France through the import of vectors that travel in trucks transporting animals. This tool is of prime importance because the LSD situation in the Balkans is continuously changing. Indeed, this model can be updated to process new information on vectors and the changing health situation, in addition to new data from the TRAde Control and Expert System (TRACES, EU database). This model is easy to adapt to different countries and to other vectors and diseases

    A simple method to estimate the number of doses to include in a bank of vaccines. The case of Lumpy Skin Disease in France

    Get PDF
    A simple method to estimate the size of the vaccine bank needed to control an epidemic of an exotic infectious disease in case of introduction into a country is presented. The method was applied to the case of a Lumpy Skin disease (LSD) epidemic in France. The size of the stock of vaccines needed was calculated based on a series of simple equations that use some trigonometric functions and take into account the spread of the disease, the time required to obtain good vaccination coverage and the cattle density in the affected region. Assuming a 7-weeks period to vaccinate all the animals and a spread of the disease of 7.3 km/week, the vaccination of 740 716 cattle would be enough to control an epidemic of LSD in France in 90% of the simulations (608 196 cattle would cover 75% of the simulations). The results of this simple method were then validated using a dynamic simulation model, which served as reference for the calculation of the vaccine stock required. The differences between both models in different scenarios, related with the time needed to vaccinate the animals, ranged from 7% to 10.5% more vaccines using the simple method to cover 90% of the simulations, and from 9.0% to 13.8% for 75% of the simulations. The model is easy to use and may be adapted for the control of different diseases in different countries, just by using some simple formulas and few input data

    First Expert Elicitation of Knowledge on Drivers of Emergence of Bovine Besnoitiosis in Europe

    Get PDF
    Bovine besnoitiosis (BB) is a chronic and debilitating parasitic disease in cattle caused by the protozoan parasite Besnoitia besnoiti. South European countries are affected and have reported clinical cases of BB. However, BB is considered as emerging in other countries/regions of central, eastern and northern Europe. Yet, data on drivers of emergence of BB in Europe are scarce. In this study, fifty possible drivers of emergence of BB in cattle were identified. A scoring system was developed per driver. Then, the scoring was elicited from eleven recognized European experts to: (i) allocate a score to each driver, (ii) weight the score of drivers within each domain and (iii) weight the different domains among themselves. An overall weighted score was calculated per driver, and drivers were ranked in decreasing order of importance. Regression tree analysis was used to group drivers with comparable likelihoods to play a role in the emergence of BB in cattle in Europe. Finally, robustness testing of expert elicitation was performed for the seven drivers having the highest probability to play a key role in the emergence of BB: i.e., (i) legal/illegal movements of live animals from neighbouring/European Union member states or (ii) from third countries, (iii) risk of showing no clinical sign and silent spread during infection and post infection, (iv) as a consequence, difficulty to detect the emergence, (v) existence of vectors and their potential spread, (vi) European geographical proximity of the pathogen/disease to the country, and (vii) animal density of farms. Provided the limited scientific knowledge on the topic, expert elicitation of knowledge, multi-criteria decision analysis, cluster and sensitivity analyses are very important to prioritize future studies, e.g., the need for quantitative import risk assessment and estimation of the burden of BB to evidence and influence policymaking towards changing (or not) its status as a reportable disease, with prevention and control activities targeting, firstly, the top seven drivers. The present methodology could be applied to other emerging animal diseases

    First report of eprinomectin-resistant isolates of Haemonchus contortus in 5 dairy sheep farms from the Pyrénées Atlantiques département in France

    Get PDF
    Infection of sheep by gastrointestinal nematodes (GIN) in pastoral systems such as those found in the South Western area of France, the Pyrénées Atlantiques, is one of the main reasons for economic loss and degradation of their welfare. In the present study, the efficacy of eprinomectin (EPN) was monitored on farms from this area following suspicion of lack of anthelmintic efficacy. Suspicions were raised by veterinarians, based on clinical signs ranging from milk and body condition loss, to anaemia, and mortality. Resistance was evaluated according to the World Association for the Advancement for Veterinary Parasitology (WAAVP) guidelines using fecal egg count reduction tests reinforced by individual analysis of drug concentration in the serum of all treated ewes by high-performance liquid chromatography (HPLC). EPN was administered by subcutaneous (SC) and topical (T) route according to manufacturer's requirements, as well as by the oral route (O) with the topical solution according to off-labelled practices in the field. For the first time in France, the presence of resistant isolates of Haemonchus contortus to EPN was observed in 5 dairy sheep farms. The HPLC dosages showed exposure of worms to concentrations compatible with anthelmintic activity for animals treated by the SC and O routes. By contrast, they showed under exposure to the drug of most individuals treated by the T route. EPN is the only null milk withdrawal anthelmintic molecule currently available. The presence of resistant isolates of the pathogenic H. contortus to EPN in this important dairy region requires an urgent change in grazing, and sometimes production, systems

    Population genetics of benzimidazole-resistant Haemonchus contortus and Haemonchus placei from buffalo and cattle: implications for the emergence and spread of resistance mutations

    Get PDF
    The population genetics of nematode parasites are poorly understood with practical reference to the selection and spread of anthelmintic resistance mutations. Haemonchus species are important to study the nematode population genetics due to their clinical importance in ruminant livestock, and the availability of genomic resources. In the present study, it has been examined that Haemonchus contortus and Haemonchus placei populations from three buffalo and nine cattle hosts. Seventy-three individual adult worms of H. contortus and 148 of H. placei were analysed using a panel of seven microsatellite markers. The number of alleles per locus in H. contortus and H. placei indicated that all populations were polymorphic for the microsatellites used in the present study. Genetic diversity parameters included high levels of allelic richness and heterozygosity, indicating effective population sizes, high mutation rates and high transmission frequencies in the area. Genetic structure parameters revealed low genetic differentiation between and high levels of genetic variation within H. contortus and H. placei populations. Population dynamic analyses showed an absence of heterozygosity excess in both species, suggesting that there was no deviation from genetic drift equilibrium. Our results provide a proof of concept for better understanding of the consequences of specific control strategies, climatic change or management strategies on the population genetics of anthelmintic resistance alleles in Haemonchus spp. infecting co-managed buffalo and cattle
    corecore