8 research outputs found

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Malnutrition among children under the age of five in the Democratic Republic of Congo (DRC) : does geographic location matter?

    Get PDF
    Background: Although there are inequalities in child health and survival in the Democratic Republic of Congo (DRC), the influence of distal determinants such as geographic location on children’s nutritional status is still unclear. We investigate the impact of geographic location on child nutritional status by mapping the residual net effect of malnutrition while accounting for important risk factors. Methods: We examine spatial variation in under-five malnutrition with flexible geo-additive semi-parametric mixed model while simultaneously controlling for spatial dependence and possibly nonlinear effects of covariates within a simultaneous, coherent regression framework based on Markov Chain Monte Carlo techniques. Individual data records were constructed for children. Each record represents a child and consists of nutritional status information and a list of covariates. For the 8,992 children born within the last five years before the survey, 3,663 children have information on anthropometric measures. Our novel empirical approach is able to flexibly determine to what extent the substantial spatial pattern of malnutrition is driven by detectable factors such as socioeconomic factors and can be attributable to unmeasured factors such as conflicts, political, environmental and cultural factors. Results: Although childhood malnutrition was more pronounced in all provinces of the DRC, after accounting for the location’s effects, geographic differences were significant: malnutrition was significantly higher in rural areas compared to urban centres and this difference persisted after multiple adjustments. The findings suggest that models of nutritional intervention must be carefully specified with regard to residential location. Conclusion: Childhood malnutrition is spatially structured and rates remain very high in the provinces that rely on the mining industry and comparable to the level seen in Eastern provinces under conflicts. Even in provinces such as Bas-Congo that produce foods, childhood malnutrition is higher probably because of the economic decision to sell more than the population consumes. Improving maternal and child nutritional status is a prerequisite for achieving MDG 4, to reduce child mortality rate in the DRC

    Inequalities in COVID-19 mortality: defining a global research agenda

    No full text
    The global death toll of the coronavirus disease 2019 (COVID-19) pandemic isvery high, with over 6 million officially registered deaths and estimates of excess mortality ranging from 10 million to 20 million. Yet this burden has not been equally distributed between countries or across race, ethnicity, socioeconomic status and social class within countries. Evidence from several countries indicate disparities in exposure, susceptibility and capacity to treat and contain infection, severe illness,hospitalization and death stemming from the disease

    Mortality from external causes in Africa and Asia: evidence from INDEPTH Health and Demographic Surveillance System Sites.

    Get PDF
    BACKGROUND: Mortality from external causes, of all kinds, is an important component of overall mortality on a global basis. However, these deaths, like others in Africa and Asia, are often not counted or documented on an individual basis. Overviews of the state of external cause mortality in Africa and Asia are therefore based on uncertain information. The INDEPTH Network maintains longitudinal surveillance, including cause of death, at population sites across Africa and Asia, which offers important opportunities to document external cause mortality at the population level across a range of settings. OBJECTIVE: To describe patterns of mortality from external causes at INDEPTH Network sites across Africa and Asia, according to the WHO 2012 verbal autopsy (VA) cause categories. DESIGN: All deaths at INDEPTH sites are routinely registered and followed up with VA interviews. For this study, VA archives were transformed into the WHO 2012 VA standard format and processed using the InterVA-4 model to assign cause of death. Routine surveillance data also provide person-time denominators for mortality rates. RESULTS: A total of 5,884 deaths due to external causes were documented over 11,828,253 person-years. Approximately one-quarter of those deaths were to children younger than 15 years. Causes of death were dominated by childhood drowning in Bangladesh, and by transport-related deaths and intentional injuries elsewhere. Detailed mortality rates are presented by cause of death, age group, and sex. CONCLUSIONS: The patterns of external cause mortality found here generally corresponded with expectations and other sources of information, but they fill some important gaps in population-based mortality data. They provide an important source of information to inform potentially preventive intervention designs

    Pregnancy-related mortality in Africa and Asia: evidence from INDEPTH Health and Demographic Surveillance System sites.

    Get PDF
    BACKGROUND: Women continue to die in unacceptably large numbers around the world as a result of pregnancy, particularly in sub-Saharan Africa and Asia. Part of the problem is a lack of accurate, population-based information characterising the issues and informing solutions. Population surveillance sites, such as those operated within the INDEPTH Network, have the potential to contribute to bridging the information gaps. OBJECTIVE: To describe patterns of pregnancy-related mortality at INDEPTH Network Health and Demographic Surveillance System sites in sub-Saharan Africa and southeast Asia in terms of maternal mortality ratio (MMR) and cause-specific mortality rates. DESIGN: Data on individual deaths among women of reproductive age (WRA) (15-49) resident in INDEPTH sites were collated into a standardised database using the INDEPTH 2013 population standard, the WHO 2012 verbal autopsy (VA) standard, and the InterVA model for assigning cause of death. RESULTS: These analyses are based on reports from 14 INDEPTH sites, covering 14,198 deaths among WRA over 2,595,605 person-years observed. MMRs varied between 128 and 461 per 100,000 live births, while maternal mortality rates ranged from 0.11 to 0.74 per 1,000 person-years. Detailed rates per cause are tabulated, including analyses of direct maternal, indirect maternal, and incidental pregnancy-related deaths across the 14 sites. CONCLUSIONS: As expected, these findings confirmed unacceptably high continuing levels of maternal mortality. However, they also demonstrate the effectiveness of INDEPTH sites and of the VA methods applied to arrive at measurements of maternal mortality that are essential for planning effective solutions and monitoring programmatic impacts

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore