58 research outputs found

    Designing Medical Technology for the Developing World

    Get PDF
    Our goal is to develop healthcare solutions that can be implemented in developing countries to reduce their dependence on donated medical equipment. We have focused on several devices: a monitor for premature babies, a bacterial sensor for infection diagnoses and water testing, and an infant automated breathing bag device to maintain breathing in newborns. Our designs minimize the use of consumables and provide better detection and/or treatment than currently available in-country. The baby monitor detects skin temperature and controls an electric warming blanket. The bacterial sensor quickly detects the bacteria in a sample without the need for lengthy culture times. The infant breathing device provides regular breathing support to newborns, relieving family from having to manually support breathing. All of our projects seek to answer critical medical needs in developing regions through reductions in costs, time, or both. Our group is partnering with local governments in Tanzania and Mexico to collaborate on our projects and work to accomplish the specific needs of these communities. These projects are partially supported by the Creative Inquiry program

    Changing cultures, changing environments: A novel means of investigating the effects of introducing non-native species into past ecosystems

    Get PDF
    Descended from junglefowl of Asia and South-east Asia, the chicken was introduced into Europe during the first millennium BCE. As one of the most recently domesticated species, it makes an excellent case study for investigating the consequences of such introductions to past ecological communities. We present a unique application of a novel ecological method to explore multiple past interspecies relationships. Analysing the faunal record using a Bayesian belief network, which allows for the analysis of multiple interspecies relationships simultaneously, indicates that the chicken has more affinity with other domestic birds rather than domestic mammals in terms of species interactions. We find that the introduction of the chicken affected fox, partridge, pigeon and rat, but the success of the chicken was most affected by responses to abiotic variables, rather than biotic interactions. As the method is not limited to environmental variables, we also examined the effect of recovery method and demonstrate that sieving would enhance the frequency of small animal remains recovered from archaeological sites

    The Social Fund - current role and future direction

    Get PDF
    This report considers the role of the discretionary Social Fund in combating poverty and possible reforms to the scheme. It is mainly based upon secondary analysis of the Family Resources Survey and the Expenditure and Food Survey and qualitative research with benefit recipients: both discretionary Social Fund applicants and nonapplicants, and people from a range of socio-economic backgrounds. Participants in the qualitative research discussed times of particular financial hardship, experiences of the Social Fund and possible reforms to the Social Fund

    Receiving the LHA : claimants’ early experiences of the LHA in the nine Pathfinder Areas

    Get PDF
    As part of its reform of Housing Benefit, the Government has introduced a Local Housing Allowance (LHA) for private rented sector claimants in nine Pathfinder areas. This report gives early findings from the claimant stream of the evaluation of LHA and covers the period up to around six months after the start of LHA in each Pathfinder. It is important to stress that these are early, emerging findings. Many claimants will only just have gone onto LHA or received direct payment for the first time, so the behavioural impacts of LHA are unlikely to have fed through as yet. These will be monitored throughout the evaluation period to assess any future changes and so these findings may develop over time

    Measuring Patient Compliance With Remote Monitoring Following Discharge From Hospital After Major Surgery (DREAMPath): Protocol for a Prospective Observational Study

    Get PDF
    BACKGROUND: The incidence of major surgery is on the rise globally, and more than 20% of patients are readmitted to hospital following discharge from hospital. During their hospital stay, patients are monitored for early detection of clinical deterioration, which includes regularly measuring physiological parameters such as blood pressure, heart rate, respiratory rate, temperature, and pulse oximetry. This monitoring ceases upon hospital discharge, as patients are deemed clinically stable. Monitoring after discharge is relevant to detect adverse events occurring in the home setting and can be made possible through the development of digital technologies and mobile networks. Smartwatches and other technological devices allow patients to self-measure physiological parameters in the home setting, and Bluetooth connectivity can facilitate the automatic collection and transfer of this data to a secure server with minimal input from the patient. OBJECTIVE: This paper presents the protocol for the DREAMPath (Domiciliary Recovery After Medicalization Pathway) study, which aims to measure compliance with a multidevice remote monitoring kit after discharge from hospital following major surgery. METHODS: DREAMPath is a single-center, prospective, observational, cohort study, comprising 30 patients undergoing major intracavity surgery. The primary outcome is to assess patient compliance with wearable and interactive smart technology in the first 30 days following discharge from hospital after major surgery. Secondary outcomes will explore the relation between unplanned health care events and physiological data collected in the study, as well as to explore a similar relationship with daily patient-reported outcome measures (Quality of Recovery-15 score). Secondary outcomes will be analyzed using appropriate regression methods. Cardiopulmonary exercise testing data will also be collected to assess correlations with wearable device data. RESULTS: Recruitment was halted due to COVID-19 restrictions and will progress once research staff are back from redeployment. We expect that the study will be completed in the first quarter of 2022. CONCLUSIONS: Digital health solutions have been recently made possible due to technological advances, but urgency in rollout has been expedited due to COVID-19. The DREAMPath study will inform readers about the feasibility of remote monitoring for a patient group that is at an increased risk of acute deterioration. TRIAL REGISTRATION: ISRCTN Registry ISRCTN62293620; https://www.isrctn.com/ISRCTN62293620. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/30638

    Monitoring Alaskan Arctic shelf ecosystems through collaborative observation networks

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Danielson, S. L., Grebmeier, J. M., Iken, K., Berchok, C., Britt, L., Dunton, K. H., Eisner, L., V. Farley, E., Fujiwara, A., Hauser, D. D. W., Itoh, M., Kikuchi, T., Kotwicki, S., Kuletz, K. J., Mordy, C. W., Nishino, S., Peralta-Ferriz, C., Pickart, R. S., Stabeno, P. S., Stafford. K. M., Whiting, A. V., & Woodgate, R. Monitoring Alaskan Arctic shelf ecosystems through collaborative observation networks. Oceanography, 35(2), (2022): 52, https://doi.org/10.5670/oceanog.2022.119.Ongoing scientific programs that monitor marine environmental and ecological systems and changes comprise an informal but collaborative, information-rich, and spatially extensive network for the Alaskan Arctic continental shelves. Such programs reflect contributions and priorities of regional, national, and international funding agencies, as well as private donors and communities. These science programs are operated by a variety of local, regional, state, and national agencies, and academic, Tribal, for-profit, and nongovernmental nonprofit entities. Efforts include research ship and autonomous vehicle surveys, year-long mooring deployments, and observations from coastal communities. Inter-program coordination allows cost-effective leveraging of field logistics and collected data into value-added information that fosters new insights unattainable by any single program operating alone. Coordination occurs at many levels, from discussions at marine mammal co-management meetings and interagency meetings to scientific symposia and data workshops. Together, the efforts represented by this collection of loosely linked long-term monitoring programs enable a biologically focused scientific foundation for understanding ecosystem responses to warming water temperatures and declining Arctic sea ice. Here, we introduce a variety of currently active monitoring efforts in the Alaskan Arctic marine realm that exemplify the above attributes.Funding sources include the following: ALTIMA: BOEM M09PG00016, M12PG00021, and M13PG00026; AMBON: NOPP-NA14NOS0120158 and NOPP-NA19NOS0120198; Bering Strait moorings: NSF-OPP-AON-PLR-1758565, NSF-OPP-PLR-1107106; BLE-LTER: NSF-OPP-1656026; CEO: NPRB-L36, ONR N000141712274 and N000142012413; DBO: NSF-AON-1917469 and NOAA-ARP CINAR-22309.07; HFR, AOOS Arctic glider, and Passive Acoustics at CEO and Bering Strait: NA16NOS0120027; WABC: NSF-OPP-1733564. JAMSTEC: partial support by ArCS Project JPMXD1300000000 and ArCS II Project JPMXD1420318865; Seabird surveys: BOEM M17PG00017, M17PG00039, and M10PG00050, and NPRB grants 637, B64, and B67. This publication was partially funded by the Cooperative Institute for Climate, Ocean, & Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, and represents contribution 2021-1163 to CICOES, EcoFOCI-1026, and 5315 to PMEL. This is NPRB publication ArcticIERP-43

    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs)

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • 

    corecore