11,151 research outputs found

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    Erratum

    Get PDF

    Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes

    Get PDF
    We use computational screening to systematically investigate the use of transition metal doped carbon nanotubes for chemical gas sensing. For a set of relevant target molecules (CO, NH3, H2S) and the main components of air (N2, O2, H2O), we calculate the binding energy and change in conductance upon adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube. Based on these descriptors, we identify the most promising dopant candidates for detection of a given target molecule. From the fractional coverage of the metal sites in thermal equilibrium with air, we estimate the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    Critical exponents of domain walls in the two-dimensional Potts model

    Full text link
    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e., connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{l_1-l_2,2 l_1}, valid for 0 </- Q </- 4, that describe the insertion of l_1 thin and l_2 thick domain walls.Comment: 5 pages, 3 figures, 1 tabl

    Are the renormalized band widths in TTF-TCNQ of structural or electronic origin? - An angular dependent NEXAFS study

    Get PDF
    We have performed angle-dependent near-edge x-ray absorption fine structure measurements in the Auger electron yield mode on the correlated quasi-one-dimensional organic conductor TTF-TCNQ in order to determine the orientation of the molecules in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within the one-dimensional Hubbard model. Thereby recent theoretical results are corroborated which invoke long-range Coulomb repulsion as alternative explanation to understand the spectral dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.Comment: 6 pages, 5 figure

    Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling

    Get PDF
    We calculate the widths, migration barriers, effective masses, and quantum tunneling rates of kinks and jogs in extended screw dislocations in copper, using an effective medium theory interatomic potential. The energy barriers and effective masses for moving a unit jog one lattice constant are close to typical atomic energies and masses: tunneling will be rare. The energy barriers and effective masses for the motion of kinks are unexpectedly small due to the spreading of the kinks over a large number of atoms. The effective masses of the kinks are so small that quantum fluctuations will be important. We discuss implications for quantum creep, kink--based tunneling centers, and Kondo resonances

    Bayesian Error Estimation in Density Functional Theory

    Full text link
    We present a practical scheme for performing error estimates for Density Functional Theory calculations. The approach which is based on ideas from Bayesian statistics involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities like binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude for different systems in good agreement with existing experience.Comment: 5 pages, 3 figure
    • …
    corecore