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Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

Joachim Jacobsen,1 Karsten W. Jacobsen,1,2 and James P. Sethna1

1Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
2Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 18 June 1997)

We study the rate of activated motion over multiple barriers, in particular the correlated double
jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a
transition path theory, showing that the activation energy is given by the minimum-energy trajectory
which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium
molecular dynamics simulation. A cusp in the acceptance region leads to a

p
T prefactor for the

activated rate of double jumps. Theory and numerical results agree. [S0031-9007(97)04186-0]

PACS numbers: 68.35.Fx, 05.20.Dd, 82.20.Db

Reaction rates and diffusion rates in crystalline envi-
ronments typically have an Arrhenius dependence on tem-
peraturer1 ­ n exps2ETSyT d. This asymptotic rate at
low temperatures may be calculated using transition state
theory (TST) [1], whereETS is the energy of the saddle-
point atomic configuration separating the initial and
final states (the transition state), andn is a temperature-
independent prefactor involving the curvatures of the
energy surface.

Many rates and transitions are not described by a simple
crossing of a single barrier, and we should expect that
their rates will not be given by the simple Arrhenius
form. In this paper we study a double jump: a correlated
diffusion event where an atom crosses two barriers.
The development of field-ion microscopy and scanning
tunneling microscopy has made it possible to track the
motion of individual atoms at surfaces [2], and to directly
measure the rates of these correlated transitions [3,4].
Developing what we call transition path theory (TPT),
we show the rate is determined by the energyETP of
the transition path (minimizing the energy among all
paths which succeed in the double jump), and has the
asymptotic formr2 ­ C

p
T exps2ETPyT d. We develop

an efficient numerical method to calculate this minimum-
energy path and the rate, and use it to describe double
jumps along the troughs of the missing-row reconstructed
Pt(110) surface within effective-medium theory [5]—
making contact with the Arrhenius double-jump rate
measured in the recent Århus experiment [4].

Previously, the rates of double jumps have been dis-
cussed theoretically as so-called dynamical corrections to
transition state theory [6,7] or in the context of general-
ized Langevin equation models [8,9].

Consider an extra adatom on the reconstructed (110)
surface (Fig. 1). A single-jump diffusion event is a
thermal fluctuation in which the adatom moves along the
troughs in the surface from one potential well over the
transition barrier to a neighboring well (say from well A
to B in the right-hand side of Fig. 1). In a double jump,
the atom moves from one potential well over two barriers
before settling down in a well (A to C in Fig. 1). The

double jumps can be distinguished from two subsequent
single jumps only if there is a separation of time scales:
the duration time for a double jump to pass through
the central well (roughly a picosecond for Pt) has to be
much smaller than the inverse rate1yr1 for single jumps
(1.4 nsec at the highest temperatures we work at).

In the case of a single jump the transition state energy
ETS is the smallest possible thermal fluctuation for a single
jump to occur. For our calculation,ETS is 469.5 meV.
What is the smallest possible thermal fluctuation in which
the adatom performs a double jump, fluctuating to the top
of one hill, sliding down, up to the top of a second hill, and

FIG. 1. The geometry of the Pt(110) surface with an adatom
and the transition path (TP) for a double jump. At upper left,
one sees the actual volume of atoms used in the simulations,
with periodic boundary conditions and static atoms at the
bottom. Lower left shows the geometry of the system with
the adatom No. 1 in a valley formed by the reconstruction.
At right we show schematically the TP and the energy. The
TP starts att ­ 2` with the system locally (close to the
adatom) at the transition state (TS) potential energy saddle
point between wells A and B; in addition, there is an energy
DE ­ ETP 2 ETS stored in the degrees of freedom far away.
The additional energy radiates in from infinity and helps
the adatom cross the well and get to the second TS. Our
calculation shows that the adatom rolls off the hill, hits atoms 2
and 4 and knocks them aside, then is hit from behind by atoms
3 and 5, who boost the adatom up the other hill. Ast ! ` the
energyDE is again radiated away to infinity [10].
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then down? Here the energy of the minimal fluctuation
involves both kinetic and potential energy: we must look
in phase space for thetransition path:the lowest energy
trajectory which will give us a double jump.

Before we more formally explain how the TP is
calculated we shall describe the qualitative features of the
path. Consider first the time evolution of the system if it
is started out in a TS and the adatom is given a slight push.
The adatom will then slowly leave the saddle point and
slide down the hill into a well but it will not make it over
the next barrier because energy will be transferred to other
atoms in the system. Eventually the adatom will be at rest
at the bottom of the well and all the energyETS will be in
the degrees of freedom far away from the adatom. The TP
is defined so that it brings the adatom to the top of the next
barrier (the next TS) with the minimum additional energy
(DE ­ ETP 2 ETS) necessary. In the TP the system is
at t ­ 2` at the TS for all the degrees of freedom close
to the adatom, but an energyDE is stored in the degrees
of freedom far away. As the adatom slides down the hill
the energy is radiating in from infinity helping the adatom
up to the second TS (Fig. 1). Ast ! ` the adatom (and
all local coordinates/momenta) approaches the second TS
and the energyDE is again radiated away to infinity [10].
The additional energyDE results in a higher activation
energy for double jumps than for single jumps.

In finding the minimum energy double-jump path, it is
important to use as variables the positions and momenta
G at t ­ 0 when the adatom is crossing the bottom of
the central well, because at this time the additional energy
DE is most localized near the adatom. Letpx be the
x momentum of the adatom att ­ 0, where x is the
coordinate along the trough. To findGTP of the TP,
we specify the positions and the momenta of the nearby
atoms within a radiusR of the adatom, and place atoms
outsideR at their relaxed positions. We then varypx to
find pmin

x , where the adatom just barely succeeds in the
double jump: crosses into the well on the right at large
times, and into the well on the left at large negative times
[11]. We calculate the total energy, and minimize with
respect to the positions and momenta of the nearby atoms.
With all atoms in their relaxed positions, 652.0 meV of
energy is needed inpx to get a double jump. Optimizing
degrees of freedom withinR ­ 1, 2.2, 3.1, 3.8, and 4.9
nearest neighbor distances of the adatom, the total energy
decreases to 621.7, 595.8, 591.4, 590.2, and 589.8 meV,
respectively. The energy converges rapidly as more
degrees of freedom are optimized andG ! GTP . We
estimateETP to be 589.8 meV: 120.3 meV higher than
the single jumpETS. The calculated TP appears to have
both of the obvious possible symmetries: one reflection
plane, and one reflection plane plus time reversal. The
time reversal symmetry implies that the local atoms both
start and end at zero velocity at the saddle points.

To calculate the rate at low temperatures, we need
to sum over all the low-energy double-jump trajectories.
Figure 2 gives an idea about how the double-jump region

FIG. 2. Energy contours (100 meV) in a cut in phase space.
mpt anddnn are the atomic mass and nearest neighbor distance
of platinum. The bridge atom is atom 2 in Fig. 1. All other
coordinates are fixed at their values in the transition path (TP)
at time t ­ 0. L (R) indicates regions in phase space, where
the adatom makes a jump to the left (right), and the solid lines
are trajectories where the local atoms end at the saddle points.
The double-jump region (gray shaded) is above both lines, and
so the bounding surface for the double-jump region has a cusp
passing throughGTP , the phase-space point taken by the TP at
t ­ 0.

in phase space looks. The figure shows this region in a
two-dimensional cut in phase space (the plane spanned
by the x coordinate of a bridge atom (atom 2 in Fig. 1)
and px of the adatom; all the remaining coordinates are
at their GTP values). R is the region corresponding to
trajectories where the adatom will jump over the barrier
to the right;L is the region where the adatom came over
the barrier from the left. The TP is the lowest-energy
trajectory which came from the left and makes it to the
right, and is situated on the cusp at the (codimension two)
intersection of the bounding surfaces ofR andL.

Our method for calculating the rate of double jumps is
analogous to the standard TST method for calculating the
rates for single jumps. TST expresses the hopping rate as
the flux through the dividing surface; at low temperatures
it is well described as a harmonic expansion of the energy
about the TS [1]:

rTST
1 ­ kQsyrdyrdsxr 2 xb

r dlyZW

­
1

2p

Q3N
i­1 viQ3N21

i­1 v
TS
i

exps2ETSyT d . (1)

In this expressionk. . .l denotes a thermal average, and
ZW denotes the partition function in one well. There-
action coordinatexr equalsxb

r at the top of the barrier, the
v’s denote the eigenfrequencies at the bottom of the well,
and thevTS’s denote the eigenfrequencies found by the
harmonic expansion at the TS (excluding the imaginary,
unstable frequency of the saddle point). Choosing the co-
ordinatexr to be along the eigendirection of the imaginary
frequency minimizes the recrossing corrections [1].
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Similarly, the double-jump rate can be calculated as the
thermal average of the flux through a surfacex̃ ­ 0 due
to double-jump trajectories:

r2 ­ kQdjyx̃dsx̃dlyZW . (2)
Here Qdj is one if the trajectory is a double jump, and
zero otherwise. In both cases the rate is calculated as a
flux through a surface, with aQ function keeping only
trajectories which succeed in the transition.

We generate an importance-sampling distribution ofM
trajectories,hGaj, in the neighborhood of the transition
path by addingGTP to a thermal ensemble restricted to
x̃ ­ 0 at the bottom of the well. We found it important
numerically to choosẽx to be a relative coordinate: the
difference between thex coordinate of the adatom and the
averagex coordinate of the four bridge atoms (Nos. 2–5
in Fig. 1). We then calculate the ratio of the double-jump
to single-jump rates:

r2

r1
­

kQdjyx̃dsx̃dl
kQsyr dyrdsxr 2 xb

r dl

­
kdsx̃dl kQdjyx̃dsx̃dl

kQsyr dyr l kdsxr 2 xb
r dl kdsx̃dl

­
p

2pmyT

"
eETSyT

3N21Y
i­1

v
TS
i

ṽi

#

3
1
M

MX
a­1

yx̃,aQdjsGadefEsGa2GTP d2EsGadgyT .

(3)

We determine which trajectories are double jumps nu-
merically: we run the molecular dynamics trajectory for-
ward and backward in time for a few picoseconds until
the trajectory either recrosses the original well ( failure,
Qdj ­ 0) or crosses the bottom of both of the adjacent
wells (success,Qdj ­ 1). This expression is complicated
by the fact that we are measuring the flux for single jumps
at the top of the barrier, and the flux for double jumps
at the bottom of the well: the term in square brackets
is precisely the ratio of probabilities of being at these
two planes, in the harmonic approximation (theṽ’s being
the eigenfrequencies in the planex̃ ­ 0, and we evalu-
ate

Q
v

TS
i yṽi to be 1.722). Our double-jump term is

fully nonlinear.
Figure 3 shows the “TP MD” (transition path molecular

dynamics) values calculated using Eq. (3). Also shown
are rate calculations performed using the more traditional
method described by Voter and Doll [6] (transition state
molecular dynamics “TS MD”), where trajectories are
started with a thermal distribution at the TST dividing
surface, and the fraction of double jumps is directly
measured. Within the statistical error bars the two
methods give the same rate, as they should. However, the
uncertainty in the traditional rate determination increases
drastically at lower temperatures because the fraction of
double-jump trajectories in the thermal ensemble becomes
small. In our language, the old method centers attention
not atGTP , but far away at the single-jump transition state.

We now discuss the asymptotic behavior of the double-
jump rates at low temperatures. In analogy to the

FIG. 3. Arrhenius plot of the rate of double jumps relative to
single jumps, showing the transition state molecular dynamics
(TS MD), transition path molecular dynamics (TP MD), and
transition path theory results. The TP theory curve isr2yr1 ­
C2

p
T exp2sETP 2 ETSdykT , where the one parameterC2 is

fitted to the TP MD data to be0.022 meV21y2.

harmonic expansion around the TS which leads to the
TST rate with an Arrhenius behavior for the single-jump
rate [Eq. (1)] we can define a transition path theory rate
rTPT

2 for the double jumps by performing an expansion of
Eq. (2) around the TP.

Qdj is a Heaviside step function inpx 2 pmin
x sG̃d,

(Fig. 2), where G̃ is the phase-space point att ­ 0
excludingx and px of the adatom. Thex and px parts
of the phase-space integral in the numerator of Eq. (2)
(choosing here for conveniencex̃ ­ x) can be explicitly
carried out, leading to

r2 ­
T

ZW

Z
dG̃ expf2ẼsG̃dyT g , (4)

where ẼsG̃d ­ Esssx ­ 0, pmin
x sG̃d, G̃ddd is the energy on

the boundary of the double-jump region. In the low-
temperature limit a harmonic expansion ofẼsG̃d around
the TP in the6N 2 2 variables G̃ can be performed
and the resulting multidimensional Gaussian integral can
in principle be carried out. Focusing on the temperature
dependence of the prefactor, we note thatpmin

x , and hence
Ẽ has a cusp in one degree of freedom (see Fig. 2), and
that there is as6N 2 3d-dimensional subspace, where the
energy is presumably locally quadratic. These6N 2 3
degrees of freedom should give rise to a factor

p
T (each)

in the prefactor, whereas the cusp degree of freedom gives
by integration a factorT , so overall we get the prefactor
T 3 T s6N23dy2 3 TyT3N ­

p
T . The TPT rate for the

double jumps is therefore of the form

rTPT
2 ­ C1

p
T exps2ETPyT d , (5)

with C1 a temperature-independent constant. Alterna-
tively we may write rTPT

2 yrTST
1 ­ C2

p
T expf2sETP 2

ETSdyT g, whereC2 is the constantC1yn.
The TPT-rate expression is shown as the solid curve in

Fig. 3 with only the constantC2 fitted to the calculated
rates. The TPT rate is clearly in agreement with the
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FIG. 4. Temperature dependence of TP MD data for the
rate of double jumps relative to single jumps. The black
dots show the data corrected for the predicted exponential
temperature dependenceffsT d ­ DEyT , DE ­ ETP 2 ETS ­
120.3 meVg. The curvature of this set of points proves that
the prefactor depends on temperature, and is well described
by the solid line, which is a plot of lnC2

p
T , where C2 is

0.022 meV21y2 as in Fig. 3. The open triangles show the
data now also corrected for the

p
T dependenceffsT d ­

DEyT 2 ln Ty2g. TP theory predicts this set of points is to be
a constantsln C2d, consistent with the data. Linear regression
(dashed line) gives a slope of10.47 6 0.2 MeV , 0.4% of
DE. This slope is a reasonable estimate of how much further
our estimatedETP could be lowered by further optimization.

simulation results even up to the highest temperature
T ­ 65 meV. At high temperatures corrections caused
by anharmonic effects can be expected and higher order
multiple jumps (triple, quadruple, etc.) may also play a
role in the diffusivity [12]. It is easy to fit the TP MD data
of Fig. 3 with an Arrhenius form with constant prefactor,
but it yields the wrong energy barrier (139 meV, 16%
too high).

Since we sample the vicinity of the TP in our numerical
method, we can extend the calculation of the double-jump
rate to much lower temperatures to confirm the theoretical
asymptotic behavior. (The double-jump rate becomes
very small.) In Fig. 4 we show the result forr2yr1
dividing out first the predicted Arrhenius dependence
(solid symbols), and further the predicted

p
T dependence

(open symbols), ending up with a set of data points
consistent with a constant. Hence our numerical method
confirms the TPT rate as given by Eq. (5).

Comparing with the recent experiments [4] on the
PtyPt(110) system we note that in our model the barrier
for single jumps isETS ­ 469.5 meV while the activa-
tion energy experimentally is found to be around 0.8 eV.
It is well known that the effective medium theory poten-
tial tends to underestimate diffusion barriers for Pt [13].
However, the TPT analysis confirms the experimental ob-
servation of a thermally activated form; the calculated ad-
ditional activation energy for double jumpsETP 2 ETS ­
120 meV is in perhaps accidentally good agreement with
the experimentally determined value which is of the order
0.1 eV.

We finally note that we have applied the TPT to the tra-
ditional Langevin equation (Ohmic damping) previously
used to describe double jumps [8]. Here the TP becomes
the optimal time evolution of the external “fluctuating”
force. The additional activation energyDE for double
jumps equals the work done by friction in the adiabatic
potentialonly in the low friction limit. We observe the
same

p
T prefactor [8].
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