10,906 research outputs found

    Towards electron transport measurements in chemically modified graphene: The effect of a solvent

    Full text link
    Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, the isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look on the influence of solvents used for chemical modification in order to understand their influence

    Extended two-level quantum dissipative system from bosonization of the elliptic spin-1/2 Kondo model

    Full text link
    We study the elliptic spin-1/2 Kondo model (spin-1/2 fermions in one dimension with fully anisotropic contact interactions with a magnetic impurity) in the light of mappings to bosonic systems using the fermion-boson correspondence and associated unitary transformations. We show that for fixed fermion number, the bosonic system describes a two-level quantum dissipative system with two noninteracting copies of infinitely-degenerate upper and lower levels. In addition to the standard tunnelling transitions, and the transitions driven by the dissipative coupling, there are also bath-mediated transitions between the upper and lower states which simultaneously effect shifts in the horizontal degeneracy label. We speculate that these systems could provide new examples of continuous time quantum random walks, which are exactly solvable.Comment: 7 pages, 1 figur

    A development of logistics management models for the Space Transportation System

    Get PDF
    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    Applications of DMDs for astrophysical research

    Full text link
    A long-standing problem of astrophysical research is how to simultaneously obtain spectra of thousands of sources randomly positioned in the field of view of a telescope. Digital Micromirror Devices, used as optical switches, provide a most powerful solution allowing to design a new generation of instruments with unprecedented capabilities. We illustrate the key factors (opto-mechanical, cryo-thermal, cosmic radiation environment,...) that constrain the design of DMD-based multi-object spectrographs, with particular emphasis on the IR spectroscopic channel onboard the EUCLID mission, currently considered by the European Space Agency for a 2017 launch date.Comment: 10 pages, Proc. SPIE 721

    Unconventional continuous phase transition in a three dimensional dimer model

    Full text link
    Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their fundamental conceptual importance. The explanation of universality at phase transitions was the great success of the theory formulated by Ginzburg and Landau, and extended through the renormalization group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical results strongly indicate that the transition is continuous and are compatible with a tricritical universality class, at variance with previous proposals.Comment: 4 pages, 3 figures; v2: minor changes, published versio

    Taenia solium Cysticercosis, Irian Jaya, Indonesia

    Get PDF
    Centers for Disease Control and Prevention, Toni, Wandra ; Akira, Ito ; Hiroshi, Yamasaki ; Thomas, Suroso ; Sri S. Margono, Emerging Infectious Diseases, 9(7), 2003, 884-885. publishe

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Beam-Ion Acceleration during Edge Localized Modes in the ASDEX Upgrade Tokamak

    Get PDF
    The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beamion population exhibits well-localized velocity-space structures which are revealed by means of tomographic inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a kinetic description of fast particles in ELM models and may contribute to a better understanding of the mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.H2020 Marie- Sklodowska Curie programme (Grant No. 708257)Ministerio de EconomĂ­a y Competitividad. FIS2015-69362-
    • …
    corecore