13,353 research outputs found

    Tethered balloon-based measurements of meteorological variables and aerosols

    Get PDF
    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Low-loss photonic crystal fibers for transmission systems and their dispersion properties

    Full text link
    We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low-loss (< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres

    A real-space grid implementation of the Projector Augmented Wave method

    Get PDF
    A grid-based real-space implementation of the Projector Augmented Wave (PAW) method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional Theory (DFT) calculations is presented. The use of uniform 3D real-space grids for representing wave functions, densities and potentials allows for flexible boundary conditions, efficient multigrid algorithms for solving Poisson and Kohn-Sham equations, and efficient parallelization using simple real-space domain-decomposition. We use the PAW method to perform all-electron calculations in the frozen core approximation, with smooth valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of twenty small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency is comparable to standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review

    Critical manifold of the kagome-lattice Potts model

    Full text link
    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure

    Critical behavior of loops and biconnected clusters on fractals of dimension d < 2

    Full text link
    We solve the O(n) model, defined in terms of self- and mutually avoiding loops coexisting with voids, on a 3-simplex fractal lattice, using an exact real space renormalization group technique. As the density of voids is decreased, the model shows a critical point, and for even lower densities of voids, there is a dense phase showing power-law correlations, with critical exponents that depend on n, but are independent of density. At n=-2 on the dilute branch, a trivalent vertex defect acts as a marginal perturbation. We define a model of biconnected clusters which allows for a finite density of such vertices. As n is varied, we get a line of critical points of this generalized model, emanating from the point of marginality in the original loop model. We also study another perturbation of adding local bending rigidity to the loop model, and find that it does not affect the universality class.Comment: 14 pages,10 figure

    Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes

    Get PDF
    We use computational screening to systematically investigate the use of transition metal doped carbon nanotubes for chemical gas sensing. For a set of relevant target molecules (CO, NH3, H2S) and the main components of air (N2, O2, H2O), we calculate the binding energy and change in conductance upon adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube. Based on these descriptors, we identify the most promising dopant candidates for detection of a given target molecule. From the fractional coverage of the metal sites in thermal equilibrium with air, we estimate the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions
    corecore