Any two-dimensional infinite regular lattice G can be produced by tiling the
plane with a finite subgraph B of G; we call B a basis of G. We introduce a
two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in
G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the
critical manifold of the q-state Potts model, with coupling v = exp(K)-1,
defined on G. This curve predicts the phase diagram both in the ferromagnetic
(v>0) and antiferromagnetic (v<0) regions. For larger bases B the
approximations become increasingly accurate, and we conjecture that P_B(q,v) =
0 provides the exact critical manifold in the limit of infinite B. Furthermore,
for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises
for any choice of B: the zero set of the recurrent factor then provides the
exact critical manifold. In this sense, the computation of P_B(q,v) can be used
to detect exact solvability of the Potts model on G.
We illustrate the method for the square lattice, where the Potts model has
been exactly solved, and the kagome lattice, where it has not. For the square
lattice we correctly reproduce the known phase diagram, including the
antiferromagnetic transition and the singularities in the Berker-Kadanoff
phase. For the kagome lattice, taking the smallest basis with six edges we
recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases
provide successive improvements on this formula, giving a natural extension of
Wu's approach. The polynomial predictions are in excellent agreement with
numerical computations. For v>0 the accuracy of the predicted critical coupling
v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to
10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure