41,599 research outputs found
Toward the next generation of research into small area effects on health : a synthesis of multilevel investigations published since July 1998.
To map out area effects on health research, this study had the following aims: (1) to inventory multilevel investigations of area effects on self rated health, cardiovascular diseases and risk factors, and mortality among adults; (2) to describe and critically discuss methodological approaches employed and results observed; and (3) to formulate selected recommendations for advancing the study of area effects on health. Overall, 86 studies were inventoried. Although several innovative methodological approaches and analytical designs were found, small areas are most often operationalised using administrative and statistical spatial units. Most studies used indicators of area socioeconomic status derived from censuses, and few provided information on the validity and reliability of measures of exposures. A consistent finding was that a significant portion of the variation in health is associated with area context independently of individual characteristics. Area effects on health, although significant in most studies, often depend on the health outcome studied, the measure of area exposure used, and the spatial scale at which associations are examined
Mach 4 and Mach 8 axisymmetric nozzles for a shock tunnel
The performance of two axisymmetric nozzles which were designed to produce uniform, parallel flow with nominal Mach numbers of 4 and 8 is examined. A free-piston-driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. The inviscid design procedure treated the nozzle expansion in two stages. Close to the nozzle throat, the nozzle wall was specified as conical and the gas flow was treated as a quasi-one-dimensional chemically-reacting flow. At the end of the conical expansion, the gas was assumed to be calorically perfect, and a contoured wall was designed (using method of characteristics) to convert the source flow into a uniform and parallel flow at the end of the nozzle. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzles and, over the range of operating conditions examined, the nozzles produced satisfactory test flows. However, there were flow disturbances in the Mach 8 nozzle flow that persisted for significant times after flow initiation
Targeted genome modifications in soybean with CRISPR/Cas9
Background: The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci.
Results: Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion (R) cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism.
Conclusions: The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species
Involutive Categories and Monoids, with a GNS-correspondence
This paper develops the basics of the theory of involutive categories and
shows that such categories provide the natural setting in which to describe
involutive monoids. It is shown how categories of Eilenberg-Moore algebras of
involutive monads are involutive, with conjugation for modules and vector
spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS)
construction is identified as a bijective correspondence between states on
involutive monoids and inner products. This correspondence exists in arbritrary
involutive categories
Disclosure of Depression in Primary Care: A Qualitative Study of Women’s Perceptions
Background Health care providers are better able to diagnose depression and initiate treatment when patients disclose symptoms. However, many women are reluctant to disclose depressive symptoms. Little is known about the experience of disclosing depression symptoms in primary care among racially and ethnically diverse women across the life course. We qualitatively explore experiences of disclosure of depressive symptoms to primary care providers among self-identified African American, Hispanic and non-Hispanic White women. Methods Twenty-four women with depression were recruited for open-ended interviews. We recorded, transcribed, and coded interviews using inductive content analysis. Findings Two distinct domains emerged: participant factors that hinder and facilitate disclosure and provider cues that encourage and dissuade discussing depression. Participants described perceptions about primary care not being the appropriate place, fear of not having a choice in treatment decisions, and the emotional cost of retelling as impediments to disclosure; perceiving an increased likelihood of getting help was described as a facilitator. Women identified provider behaviors of asking about depression and showing concern as facilitators, and provider time constraints as a barrier to disclosure. Conclusions Women perceive that primary care is not the appropriate place to disclose depression symptoms. Increased public education about behavioral health management in primary care, as well as more robust integration of the two, is needed. Efforts to improve depression disclosure in primary care must also encompass systematic use of depression screening tools and implementation of targeted interventions to cultivate provider empathy
Preliminary tests of an advanced high-temperature combustion system
A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent
Engineering Quantum States, Nonlinear Measurements, and Anomalous Diffusion by Imaging
We show that well-separated quantum superposition states, measurements of
strongly nonlinear observables, and quantum dynamics driven by anomalous
diffusion can all be achieved for single atoms or molecules by imaging
spontaneous photons that they emit via resonance florescence. To generate
anomalous diffusion we introduce continuous measurements driven by L\'evy
processes, and prove a number of results regarding their properties. In
particular we present strong evidence that the only stable L\'evy density that
can realize a strictly continuous measurement is the Gaussian.Comment: revtex4-1, 17 pages, 7 eps figure
Statics and dynamics of domain patterns in hexagonal-orthorhombic ferroelastics
We study the statics and the dynamics of domain patterns in proper
hexagonal-orthorhombic ferroelastics; these patterns are of particular interest
because they provide a rare physical realization of disclinations in crystals.
Both our static and dynamical theories are based entirely on classical,
nonlinear elasticity theory; we use the minimal theory consistent with
stability, symmetry and ability to explain qualitatively the observed patterns.
After scaling, the only parameters of the static theory are a temperature
variable and a stiffness variable. For moderate to large stiffness, our static
results show nested stars, unnested stars, fans and other nodes, triangular and
trapezoidal regions of trapped hexagonal phase, etc observed in electron
microscopy of Ta4N and Mg-Cd alloys, and also in lead orthovanadate (which is
trigonal-monoclinic); we even find imperfections in some nodes, like those
observed. For small stiffness, we find patterns like those observed in the
mineral Mg-cordierite. Our dynamical studies of growth and relaxation show the
formation of these static patterns, and also transitory structures such as
12-armed bursts, streamers and striations which are also seen experimentally.
The major aspects of the growth-relaxation process are quite unlike those in
systems with conventional order parameters, for it is inherently nonlocal; for
example, the changes from one snapshot to the next are not predictable by
inspection.Comment: 9 pages, 3 figures (1 b&w, 2 colour); animations may be viewed at
http://huron.physics.utoronto.ca/~curnoe/sim.htm
Shape of a liquid front upon dewetting
We examine the profile of a liquid front of a film that is dewetting a solid
substrate. Since volume is conserved, the material that once covered the
substrate is accumulated in a rim close to the three phase contact line.
Theoretically, such a profile of a Newtonian liquid resembles an exponentially
decaying harmonic oscillation that relaxes into the prepared film thickness.
For the first time, we were able to observe this behavior experimentally. A
non-Newtonian liquid - a polymer melt - however, behaves differently. Here,
viscoelastic properties come into play. We will demonstrate that by analyzing
the shape of the rim profile. On a nm scale, we gain access to the rheology of
a non-Newtonian liquid.Comment: 4 pages, 4 figure
Intermediate states at structural phase transition: Model with a one-component order parameter coupled to strains
We study a Ginzburg-Landau model of structural phase transition in two
dimensions, in which a single order parameter is coupled to the tetragonal and
dilational strains. Such elastic coupling terms in the free energy much affect
the phase transition behavior particularly near the tricriticality. A
characteristic feature is appearance of intermediate states, where the ordered
and disordered regions coexist on mesoscopic scales in nearly steady states in
a temperature window. The window width increases with increasing the strength
of the dilational coupling. It arises from freezing of phase ordering in
inhomogeneous strains. No impurity mechanism is involved. We present a simple
theory of the intermediate states to produce phase diagrams consistent with
simulation results.Comment: 16 pages, 14 figure
- …
