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ABSTRACT

This study examines the performance of two axisymmetric nozzles which were designed

to produce uniform, parallel flow with nominal Mach numbers of 4 and 8. A free-piston-

driven shock tube was used to supply the nozzle with high-temperature, high-pressure test

gas. The inviscid design procedure treated the nozzle expansion in two stages. Close to

the nozzle throat, the nozzle wall was specified as conical and the gas flow was treated as

a quasi-one-dimensional chemically-reacting flow. At the end of the conical expansion, the

gas was assumed to be calorically perfect and a contoured wall was designed (using Method-

of-Characteristics) to convert the source flow into a uniform and parallel flow at the end of

the nozzle. Performance was assessed by measuring Pitot pressures across the exit plane

of the nozzles and, over the range of operating conditions examined, the nozzles produced

satisfactory test flows. However, there were flow disturbances in the Mach 8 nozzle flow that

persisted for significant times after flow initiation.

1Research was supported at the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





Notation

a : speed of sound

d : diameter

H : total enthalpy

L : nozzle length

M : Mach number

P : pressure

r : radial coordinate

T : temperature

t : time

u : axial velocity
x : axial coordinate

3" : ratio of specific heats

At : time delay for normalizing

6 : boundary layer thickness

6" : boundary layer displacement thickness

A : volumetric compression ratio for the driver tube

p : density

Subscripts:
* : throat condition

A, B, G', D : locations in the inviscid design

d : inviscid design value

s : nozzle supply/stagnation condition
t : truncated nozzle value

1 INTRODUCTION

In recent years there has been a renewal of interest in pulse-type aerodynamic test facilities as

a way of providing experimental data for flight Mach numbers greater than 8. In particular,

the free-piston-driven reflected-shock tunneI has emerged as a versatile facility covering the

hypervelocity range 10 < Mlli_ht < 25 with sufficient test section density to be useful in

combustion studies. See Stalker [1] and Hornung [2] for reviews of pulse facilities and their

use in experimental hypervelocity aerodynamics.

When designing experiments for these facilities, the duration of the quasi-steady test

flow is often a limiting factor. Typical test times range from _ to 3 millseconds. From the

experimenter's point of view, the model size must be restricted so that the important flow

features are allowed to reach steady state in the available test time (see e.g. [3]). From the

facility designer's point of view, it is important to make the steady flow duration as long as



possible. Therefore, the facility nozzlemust not only provide uniform and parallel flow to

the test region, it should alsostart quickly and reachsteadystate while consumingaslittle
test gas aspossible. Theseconstraints becomemore severeat the higher enthalpieswhere
the facility suppliesa smaller amount of test gasfor a shorter time.

The approachto steady state flow in the nozzle can be influenced by unsteady processes in

both the inviscid core flow, and the nozzle wall boundary layer. The inviscid wave processes

cause large changes in the test flow parameters but, provided that the initial density of the

gas in the nozzle is low enough, these processes tend to be completed in a time which is only

a little more than the time required for the steady flow to traverse one nozzle length. The

effect of the boundary layer on the test flow parameters is not always large enough to be

significant but, when it is, the fact that some three flow lengths are required to produce a

steady boundary layer [4] implies that viscous effects may be the cause of much longer delays

in attaining steady flow in the test region.

This paper provides an overview of the design and performance of two of the contoured

nozzles used on the T4 shock tunnel facility [5] located at the University of Queensland.

One was designed for a nominal Mach number of 4 and, as manufactured, was 0.512m long

with a 25.0mm throat diameter and a 135mm exit diameter. It was not expected to show

significant boundary layer effects. The other nozzle, designed for a Mach number of 8, was

1.86m long, had a 15.24mm diameter throat and a 388mm diameter exit. Because of its

greater length and higher Mach number, it was expected to be much more prone to boundary

layer effects. Further details, including detail drawings of the nozzle components, may be

found in [61 and [7].

In Section 2 the operation of the shock tunnel is described and the transient nature of

the flow is noted. Section 3 describes the design procedure used for both nozzles. The

nozzles, intended to supply test gas to model scramjet combustors, were designed using the

simple flow decoupling approach described in [8]. This procedure is essentially the classical

procedure as describedin many text books (see e.g. [9], [10]) except for the analysis of the

flow near the nozzle throat.

Both nozzles were calibrated by measuring Pitot pressures near the exit plane for a

number of operating conditions. A subset of the measurements is presented in Section 4.

Quasi-steady performance for both nozzles was adequate but, for the Mach 8 nozzle, it was

found that the flow was taking much longer to reach steady state than initially expected.

This delay in starting was the subject of numerical study [11].



2 REFLECTED-SHOCK TUNNEL OPERATION

The principal features of a free-piston driven shock tunnel, along with an approximate wave

diagram, are shown in Fig. 1. The driver tube, which initially contains low pressure helium

downstream of the piston, and the shock tube which contains the test gas, are separated

by the primary diaphragm. This diaphragm was typically composed of two sheets of mild

steel. Attached to the downstream end of the shock tube is the facility nozzle whose throat

is significantly smaller than the inside diameter of the shock tube. The subsonic portion

of the nozzle effectively closes the downstream end of the shock tube and forms the shock

reflection region. The supersonic portion of the nozzle empties directly into a test section

and dump tank which is evacuated to an initial pressure of approximately 30 Pa. The test

gas is retained in the shock tube by a thin mylar diaphragm.

The first stage of operation consists of the launch of the piston and its acceleration along

the compression tube. The driving force is supplied by compressed air from a reservoir. The

helium in front of the piston is compressed and eventually bursts the primary diaphragm

(at a pressure 56.6MPa for a 4ram thick diaphragm). After diaphragm rupture, the helium

expands into the shock tube and shock-compresses the test gas before it. The primary shock

wave travels the length of the shock tube, reflects from the closed end, and brings the test gas

to rest in the nozzle supply region. Operation in this manner is called tailored and is shown

in the wave diagram (Fig. l(b)) by the contact surface coming to rest when intercepted by

the reflected shock. Ideally the nozzle supply conditions, characterized by the total enthalpy

Ho and pressure P,, are maintained as the reflected shock continues upstream though the

driver gas. In an effort to delay the arrival of the driver gas at the nozzle throat and increase

the available test time, the shock tube was operated in an undertailored mode where the

reflected shock accelerates into the driver gas and an expansion propagates into the nozzle

supply region. This increases the distance between the driver-gas/test-gas interface and the

end wall of the shock tube but also results in an unavoidable drop in Po shortly after shock

reflection. The net result is a typical nozzle supply pressure history as shown in Fig. 2. The

transducer used to obtain this trace was located approximately 8era upstream of the closed

end of the shock tube. Hence, the passage of the primary and reflected shocks are shown as

distinct events. Because of the location and limited response time for the transducer, the

peak reflection pressure was not recorded. Once past the maximum value, Po continued to

decay due to the combined effects of undertailored operation and driver dynamics. For pure

helium driver gas and operation considered here, this decay was typically 25 - 30% during

a nominal 0.5ms test time.

Upon shock reflection, the light secondary diaphragm bursts and some of the test gas



following the primary shockexpandsthrough the nozzlethroat into the divergentpart of the

nozzle. From the point of view of the nozzle,the shocktube is now a reservoir of stagnant,

high-temperature, high-pressuretest gas. The subsequentstarting of the nozzle has been

examinedexperimentally and analytically by Amann [12] and Smith [13]. Note that while
the Mach 4 nozzleis relatively short and is expectedto start quickly, the Mach 8 nozzle is

large enough for the starting time to significantly reducethe available test time. Thus a

quanitative understanding of the starting processesis important.

As the primary shock travels down the nozzle it acceleratesthe very low pressuregas

already in the nozzle. However,the primary shockdeceleratesbecauseof the diverging nozzle
walls. Figure 3, basedon the quasi-one-dimensionalmodel in [13] illustrates this situation.

Test gaswhich acceleratesthrough the nozzlethroat following the primary shock,expands
to a very high Mach number and is suddenly deceleratedwhen it encounters the slower

primary shock structure. An upstream-facing shock is thus formed and is swept downstream

through the nozzle. Between the upstream-facing shock and the steady expansion being

established near the throat there is an unsteady expansion, the upstream head of which

is being swept downstream Wit]a:-vel6c_ty u - a. When-the unsteady expansion is the last

wave to be expelled, the starting time for the nozzle can be approximated from the steady

state conditions. For higher initial pressures in the nozzle/test-section, the transit time for

the upstream-facing shock will determine the nozzle starting time [13]. In the conical and

wedge-shaped nozzles studied by Smith, the initial pressure could be significantly higher than

the steady-state static pressure without prolonging the starting processes. However, for the

Mach 8 contoured nozzle studied here, an initial pressure of a tenth of the steady-state static

pressure is sufficient to delay the quasi-one-dimensional starting process [11]. A similar effect

Was also observed by Cregorenko et al [14] for high Mach number conical nozzles.

The quasl-one-dlmensional model has been considered adequate for most practical situ-

ations where the divergence angle of the nozzle is small and the design Mach number of the

nozzle is not too large. Britan and Vasil'ev [15], have studied two-dimensional situations in

which the nozzle divergence angle is large and where multidimensional effects upstream of

the throat result in high peak properties at the throat (on a time scale much smaller that the

nominal test time). The numerical study in [11] did not consider such effects in the subsonic

part of the nozzle but concluded that they should be included in future studies.
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3 NOZZLE DESIGN

Once the test gas is brought to rest at the end of the shock tube, it is expanded to the test

section conditions in two conceptually separate stages. First, the gas is expanded through a

conical section to produce a uniform source flow, and then it is straightened by the contoured

section of the nozzle wall so that the flow into the test section is approximately uniform

and parallel. This procedure was first used to design nozzles for reflected-shock tunnels

by Stalker and Daffy (circa 1972, unpublished) and is still the method of choice for high

enthalpy facilities [16] where chemical reaction greatly complicates the flow analysis near the

throat.

For typical facility operating conditions in the ranges lOMJ/kg < H, < 40MJ/kg,

IOMPa < Po < 80MPa, chemical nonequilibrium effects have a significant effect on the

nozzle flow. For example, recombination near the nozzle throat tends to keep the gas tem-

perature high and thus produce a test flow with lower Mach number than would occur for

a nonreacting flow. Thus, shock tunnel nozzles generally have larger area ratios than their

perfect gas (9' = 1.4) counterparts. Also, chemical freezing can cause as much as 25% of the

total enthalpy to be retained as dissociated products leaving the nozzle.

The splitting of the overall nozzle expansion into two stages allows a relatively simple

analysis of the flow. A quasi-one-dimensional analysis is used in the early stages of the

expansion where nonequilibrium chemical effects are important, while a standard perfect-

gas method-of-characteristics analysis is used in the second stage of the expansion (i.e. the

contoured wall section). Such a simplification was considered reasonable as a previous study

[17] indicated that nozzle contours computed for a chemically reacting gas mixture were very

similar to contours computed for a perfect gas with a suitably chosen value of 7.

3.1 Mach 4 Nozzle

The design point chosen for the Mach 4 nozzle had a nozzle supply pressure Po = 30.4MPa,

a supply enthalpy Ho = 16.2MJ/kg and temperature T° --- 8000K. The throat diameter

d. = 25.0ram was chosen to match that of the Mach 5 nozzle already in use on the T4 facility.

A conceptual view of the entire nozzle is shown in Fig. 4. For computational convenience,

we set the origin of the axial coordinate to the start of the conical expansion (immediately

after the throat).

For the subsonic portion of the nozzle, most of the end of the shock-tube had been kept

flat and normal to the tube axis so that the shock reflection was well behaved. The subsonic

lead-in to the throat needed to be smooth in order to avoid separation and associated oblique



shocks at the beginning of the conical expansion [12]. The throat was a constant diameter

section of (approximate) length d. and was manufactured from a beryllium-copper alloy (B10

or B25). In reference [18] it was indicated that such throats produce good quality source flow

when used in conical nozzles. Also, it was found that these throats resisted erosion better

than those with a shorter constant-diameter section or those manufactured from grade 316

stainless steel. In operation, the Be-Cu throats of the Mach 4 nozzle did not erode noticeably.

The design of the initial conical expansion (region 2, Fig. 4) involved the analysis of

the flow as a steady, quasi-one-dimensional chemically reacting flow. Flow properties were

determined with the program NENZF [19] in which gas in the nozzle supply region (region 1)

upstream of the throat is assumed to be stagnant and in chemical equilibrium. A chemical

equilibrium model was also used in the throat but a finite-rate chemistry model was used

downstream of the throat. The conical expansion had a cone half-angle of 12 ° and extended

to • -- 0.0984ra. At this point, the reactions were assumed frozen and the gas was modelled

as a perfect gas. The Mach number at the end of the conical expansion MA ----u/a ----2.804

where a is an estimate of the speed of sound. The value 3' -- 1.33 was chosen for the

subsequent perfect gas calculations.

The Method-of-Characteristics (MOC) was then used to compute the source flow (region

3), the flow correcting section (region 4) and the uniform flow region (region 5) in a semi-

automated way with the program described in [20]. The inlet boundary was specified as

uniform source flow at 12 points along the arc AB. The Mach number on the axis at point

C was computed to be Mo = 4.12 and, beyond this point, was held constant. The solution

then stepped downstream along the axis and computed the required flow in region 4 by

proceeding upstream along characteristics of the same family as CA. Once the characteristic

mesh was generated, a streamline was interpolated through the mesh, starting at point A

and i_nlshlng where it intersected the characteristic CD (which forms the upstream boundary

of the uniform test flow region). The data points on the interpolated streamline were then

fitted with a cubic-spline function [21] having eight knots and a starting slope specified to

match the initial conical expansion. Table 1 displays the coordinates of the knots for the

spline function.

A boundary layer correction was added to the inviscid contour as a linear variation of

displacement thickness. Thus, the total wall radius was

r,o, = + , (1)
XD

where the boundary layer displacement thickness was estimated to be 6_ = 1.4mm at the

nozzle exit plane [6] and ri,_,_a is given by the spline function specified in Table 1.
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1 0.09843

2 0.15748

3 0.21654

4 0.27559

5 0.33465

6 0.39370

7 0.45276

8 0.51181

xj rj comment

(m) (m)

point A, dr/dx = 0.21260.03343

0.04445

0.05279

0.05856

0.06230

0.06466

0.06588

0.06607 point D, natural end condition

Table 1: Knots for the cubic interpolating spline for the Mach 4 nozzle.

The fabricated nozzle is shown in cross-section in Fig. 5(A). Note that the converging

(subsonic) region closes off the shock tube to form the shock reflection region. This compo-

nent of the nozzle was manufactured from high-tensile steel and extended into the diverging

section of the nozzle to the axial location x = 0.15m. The contoured wall section of the

nozzle was manufactured from aluminium.

3.2 Mach 8 Nozzle

The design point chosen for the Mach 8 nozzle was the same as that for the Mach 4 nozzle

(i.e. Po = 30.4MPa, Ho = 16.2MJ/kg, To = 8000K). The throat diameter d, = 15.24mm

was chosen after some iteration. The design is based on the same procedure as that used for

the Mach 4 nozzle.

Again, most of the end of the shock-tube had been kept fiat and normal to the tube

axis so that the shock reflection was well behaved. This was not expected to cause any

problem as the area ratio of the nozzle was large (Ae=,t/A, _- 667) [22]. The throat was a

constant diameter section of length d, and was manufactured from a beryllium-copper alloy.

In operation, the Be-Cu throats of the Mach 8 nozzle were observed to increase in diameter

by approximately 0.5ram over six shots when the facility was operated at /t', = lOMJ/kg

and Po = 50 - 70MPa.

The initial conical expansion had a cone haft-angle of 14 ° and extended to x = 0.168m.

At this point, the reactions were again assumed frozen and the gas was modelled as a perfect

gas. The flow conditions at the end of the conical expansion were MA = u/a = 4.245 and

ratio of specific heats q' = 1.38. This value was chosen by considering equivalent chemically

reacting and perfect gas flows through the same quasi-one-dimensional expansion.



1 0.16800

2 0.45648

3 0.74488

4 1.03336

5 1.32176

6 1.61024

7 1.89872

8 2.18712

xj rj comment

(m) (m)
point A, dr/dx = 0.24930.04951

O.10584

0.14208

0.16552

O.18104

0.19040

0.19520

0.19688 point D, natural end condition

Table 2: Knots for the cubic interpolating spline for the Mach 8 nozzle wall.

The inlet boundary for the MOC calculation was specii_ed as uniform source ftow at 12

points along the arc AB in Fig. 4. The Mach number on the axis at point C was computed

to be Me -- 8.02 and, beyond this point, was held constant. The solution for regions 4

and 5 was then generated and a streamline interpolated from A to D. Table 2 displays the

coordinates of the knots for the spline representation of this streamline.

The design process described above produces a nozzle with the smallest inviscid design

length La = 2.187m. However, a smoother transition may be obtained by adding a section

with a smooth variation of axial Mach number between the end of the source flow region

(C) and the start of the uniform test flow region. The length of the fabricated nozzle was

later reduced by truncating the design contour at Lt = 1.8m where the characteristic CD

intersected the estimated boundary layer edge. Because of the high exit Mach number, L_

is significantly smaller than Ld.

The final design is shown in cross-section in Fig. 5(B). The subsonic region and the initial

conical expansion are similar to those of the Mach 4 nozzle however, most of the contoured

wall is manufactured from glass-reinforced plastic and is attached to the steel section with

an aluminium flange. Glass-reinforced plastic was used in an effort to keep the nozzle mass

small and to enable easy manufacture of the contoured wall. Damage to the plastic surface

caused by contact with the high temperature test gas does not appear to be a problem.

4 EXPERIMENTAL CALIBRATION

The performance of each nozzle was evaluated by measuring the Pitot pressure P_to_ at

planes normal to the nozzle axis. Refer to reports [6] and [7] for the original data sets for
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the M = 4 nozzle and M = 8 nozzle respectively.

Each Pitot probe was fitted with a PCB-112 piezo-electric pressure transducer which

measured the stagnation pressure behind a detached shock that formed over the upstream

face of the probe. Several probes were mounted in a rake and a number of shots of the shock

tunnel were made at each nominal operating condition.

Figure 6 shows the unfiltered histories of both nozzle supply pressure and Pitot pressure.

These shots were typical of the shots that were made for the two calibration surveys. Note

that the time origin is arbitrary as the recording device was triggered from the supply

pressure signal and had an arbitrary pretrigger delay. All of the traces in Fig. 6 show the

impulsive start and subsequent decay as discussed in Section 2. The time delay from shock

reflection to the initial rise in the Pitot trace is the time for the primary shock to propagate

through the nozzle. The relatively slow initial rise of the Pitot trace for the M = 8 nozzle is

due to the filling of the probe cavity.

Although the absolute pressures are changing during the test flow period, a quasi-steady

estimate can be obtained by considering Pitot traces normalized by a time-shifted supply

pressure trace

P,_,_ = P#,o,(t)/P,(_- At) , (2)

where At is the nominal transit time of a fluid particle from the shock reflection region to the

probe position. Before applying this normalization procedure, individual traces were filtered

by taking a moving average over a 0.05ms window.

4.1 Mach 4 Nozzle Performance

Filtered Pitot pressure traces at z --- 0.67m and a number of radial locations are shown in

Fig. 7(a). The supply conditions are HI "_ 8.SMJ/kg and P, "_ 13MPa. The lower Pitot

pressures measured at r = 55ram are produced by the expansion fan propagating from the

trailing edge of the nozzle wall. The relatively flat normallzed traces shown in Fig. 7(b)

indicate that the nozzle starts quickly and produces a long duration quasi-steady flow. The

extreme values in the early part of the traces (t < 2.6ms) are a mixture of starting pulse

and numerical artifact as the nominal time used in equation (2) is less than the time taken

for the starting shock structure to traverse the nozzle.

Figure 8 shows the pitot profiles for a nominal supply pressure Po "_ 13MPa and supply

enthalpies Ho __ 16MJ/kg, 8.8MJ/kg, and 6.6MJ/kg. These representative values were

obtained by taking an average of the filtered trace over a 0.5ms test period starting shortly

after the passage of the starting shocks. The bar on each data point indicates the standard



deviation of the normalized trace during the same test period. The test flow core appears to

extend to r --_ 40ram with a variation of 4-5% in quasi-steady Pitot pressure. Profiles mea-

sured0.1m further downstream [6] provided evidence that the flow divergence was less than

2.5 degrees but the shot-to-shot variation of the supply pressure measurements prevented an

accurate determination.

4.2 Mach 8 Nozzle Performance

Filtered Pitot pressure traces at a number of radial locations are shown in Fig. 9(a). Here,

the time base has been shifted such that the shock reflection occurred at t = 0. Note that,

after reaching peak values, the traces near the nozzle axis show a rapid decay clown to the

levels of the outer traces. Note also the fall-off in average pressure and the decline in quality

for the trace at r = 142tara. This location appears to be within the boundary layer formed

along the nozzle wall.

Normalized Pitot pressure histories for shot 1406 are shown in Fig. 9(b) where At = 0.50ms.

The trace at r = 112mm illustrates the classical starting process in which the shock structure

appears first followed by the unsteady expansion fan (the dip at t = 0.6ms and subsequent

rise to t = 1.0ms) and then steady conditions (t > 1.2ras). Toward the nozzle axis, the flow

establishment is qualitatively different. Starting with the passage of the unsteady expan-

sion (t __ 0.75ms), there is a large disturbance in the flow which is evident out to a radius

r = 90turn. Such behaviour was obvious in most (but not all shots) and tended to be less

significant at the highest enthalpy condition (H, __ 16MJ/kg). For Ho >_ lOMJ/kg, the

disturbed flow consumed a significant fraction of the available test time.

Figure 10 shows the timing of the events at the exit plane of the nozzle for shots with a

nominal supply pressure Po __ 50MPa. Estimates for the arrival time of the primary shock

(line A) and the time to settle within 10% of steady state (line B) were computed using

the quasi-one-dlmensional model and the code described in [11]. The initial pressure within

the nozzle was set to P_,,_t = 33Pa which is typical of conditions used in the T4 facility.

Unfortunately precise values of Pi,_t were not recorded. Approximate times for arrival of

contaminated gas were taken from [1] and adjusted for the length of this nozzle.

The arrival time of the incident shock was well approximated by the quasi-one-dimensional

model except at the H, __ 6.6MJ/k,g condition. Here, either transient supply conditions or

higher initial pressures in the test section may account for the differences. The settling time

estimates (line B, Fig. 10) were relatively insensitive to either of these influences. In the

experimental traces, the passage of the upstream head of the expansion fan was identified

10



as the point (after the shockstructure passes)where the normalized Pitot pressurerose to

the steady level. (Note that the trace may have exceededthe steady-statevalue after this

time.) Thesetimes agreequalitatively with the predictions of the settling times (line B) but
were all consistently delayed. This may be a multidimensional effect associatedwlth the

distortion of the upstream-facingshockand the unsteadyexpansion[11].

The experimental settling time seemedto occur approximately 0.3rns after the passage

of the unsteady expansion. At the highest enthalpy (Ha _ 16MJ/kg) this settling time
coincidedwith the estimated arrival time of the driver gascontamination however,the con-
tamination time estimateswere consideredconservativeand the flow disturbanceswere rel-

atively small at this condition. Hence,someuseful (albeit short) test time wasexpectedto
be available.

Oncea test time was identified (by starting after the initial flow perturbations and then
terminating beforethe expectedtime of contamination), a quasi-steadyvaluewascomputed
as the mean value of the filtered and normalized trace over the test period. Thesemean

values,together with standard deviations computedover the sameperiod, areshownin Fig.
11. The profiles are grouped with increasingsupply enthalpy to the right and increasing

supply pressure to the top. Other than some spurious data points near the nozzle axis, the

profiles appear to be satisfactory (for shock tunnel work). If the nozzle contour was not

performing well then, disturbances would be expected to focus near the nozzle axis. The

stray data points may indicate the existence of such problems.

Computed distributions of Pitot pressure are compared with quasi-steady experimental

values in Fig. 12. The supply conditions are Ha _ lOMJ/kg and P, __ 50MPa. Computed

profiles for both viscous and inviscid wall boundary conditions are shown. Details of the

full Navier-Stokes simulation are available in [11]. At x -- 1.8m the computed values for

the viscous wall simulation fortuitously capture the spurious data points at the nozzle axis.

Although the bulk of the computed values are reliable and match the experimental values

well, those near the nozzle axis are subject to a particularly noisy boundary condition and

should not be trusted. At x = 2.0rn there is obvious disagreement with the experiment near

the axis. The experimental results also indicate that the physical boundary layer is thicker

than that computed in the viscous-wall simulation. Note that the viscous-wall simulation

was for laminar flow only whereas the physical flow may have been partly turbulent.
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5 CONCLUDING REMARKS

The design of Mach 4 and a Mach 8 nozzles for use on a reflected shock tunnel has been

described. The procedure treats the expanding flow in the nozzle as two conceptually sepa-

rate flows. The initial conical expansion is treated as a quasi-one-dimensional expansion of

a chemically-reacting gas. At the end of this conical expansion, the flow is assumed to be a

source flow of a calorically perfect gas and the subsequent contoured section of the nozzle is

determined by a method-of-characteristics analysis.

From the experimental point of view, the nozzles appear to produce a satisfactory test

flows once a (quasi-)steady state is reached. Hence, the simple inviscid design approach is

adequate but would benefit from the addition of a boundary layer correction for the Mach 8

nozzle. It may be possible to partially compensate for this oversight by manufacturing nozzle

throats with smaller diameters while maintaining the current dimensions of the contoured

expansion.

Although the steady performance of the Mach 8 nozzle is adequate, the settling times are

much longer than predicted by the classical quasi-one-dimensional models. This delay in flow

establishment is especially important at high enthalpy (H, > 16MJ/kg) operating conditions

as the nozzle supply conditions are maintained for relatively short times after shock reflection.

Fortunately, this problem is compensated by the magnitude of the disturbances becoming

small at higher Ho.
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Figure 2: Typical history of the (unfiltered) nozzle supply pressure showing the principal

events: (a) arrival of the incident shock; (b) reflect;ed shock; (c) establishment of equilibrium

pressure; (d) driver gas contamination.

0.20 _- e ,-

I-
0.00 I ..

0.0 0.5 1.0

0.8

0.7 d

I II

eb a

I

2.0

0.6

0.5

0.4

0.3

0.2

0.t

0.0
0.0

//i

0.5 1.0 t.5 2.0

X_ m

Figure 3: Quasi-one-dimensional model of the nozzle starting process in both the physical

plane and tiie $ - _ plane. Labetled features are: (a) primary Shock; (b) contact surface; (c)

upstream-facing shock; (d) upstream head of the unsteady expansion; (e) steady expansion.
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D

B C Nozzle axis

Figure 4: Schematic view of a contoured nozzle showing regions of: (1) stagnant nozzle

supply gas; (2) transition to source flow; (3) source flow; (4) transition to parallel flow; (5)

parallel flow.
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Figure 5: Sectional view of the (A) Mach 4 and (B) Mach 8 nozzles showing (a) shock-

reflection/ nozzle-supply region; (b) high-tensile steel section; (c) retaining nut; (d) alu-

minium flange (M = 8); (e) aluminium contoured section (M = 4); (f) glass-reinforced

plastic section (M = 8).
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