97 research outputs found

    Application of Modern Fortran to Spacecraft Trajectory Design and Optimization

    Get PDF
    In this paper, applications of the modern Fortran programming language to the field of spacecraft trajectory optimization and design are examined. Modern object-oriented Fortran has many advantages for scientific programming, although many legacy Fortran aerospace codes have not been upgraded to use the newer standards (or have been rewritten in other languages perceived to be more modern). NASA's Copernicus spacecraft trajectory optimization program, originally a combination of Fortran 77 and Fortran 95, has attempted to keep up with modern standards and makes significant use of the new language features. Various algorithms and methods are presented from trajectory tools such as Copernicus, as well as modern Fortran open source libraries and other projects

    Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage–modified chromatin

    Get PDF
    DNA double-strand breaks (DSBs) trigger accumulation of the MRE11–RAD50–Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex, whose retention on the DSB-flanking chromatin facilitates survival. Chromatin retention of MRN requires the MDC1 adaptor protein, but the mechanism behind the MRN–MDC1 interaction is unknown. We show that the NBS1 subunit of MRN interacts with the MDC1 N terminus enriched in Ser-Asp-Thr (SDT) repeats. This interaction was constitutive and mediated by binding between the phosphorylated SDT repeats of MDC1 and the phosphate-binding forkhead-associated domain of NBS1. Phosphorylation of the SDT repeats by casein kinase 2 (CK2) was sufficient to trigger MDC1–NBS1 interaction in vitro, and MDC1 associated with CK2 activity in cells. Inhibition of CK2 reduced SDT phosphorylation in vivo, and disruption of the SDT-associated phosphoacceptor sites prevented the retention of NBS1 at DSBs. Together, these data suggest that phosphorylation of the SDT repeats in the MDC1 N terminus functions to recruit NBS1 and, thereby, increases the local concentration of MRN at the sites of chromosomal breakage

    Belief-based action prediction in preverbal infants

    Get PDF
    Successful mindreading entails both the ability to think about what others know or believe, and to use this knowledge to generate predictions about how mental states will influence behavior. While previous studies have demonstrated that young infants are sensitive to others’ mental states, there continues to be much debate concerning how to characterize early theory of mind abilities. In the current study, we asked whether 6-month-old infants appreciate the causal role that beliefs play in action. Specifically, we tested whether infants generate action predictions that are appropriate given an agent’s current belief. We exploited a novel, neural indication of action prediction: motor cortex activation as measured by sensorimotor alpha suppression, to ask whether infants would generate differential predictions depending on an agent’s belief. After first verifying our paradigm and measure with a group of adult participants, we found that when an agent had a false belief that a ball was in the box, motor activity indicated that infants predicted she would reach for the box, but when the agent had a false belief that a ball was not in the box, infants did not predict that she would act. In both cases, infants based their predictions on what the agent, rather than the infant, believed to be the case, suggesting that by 6 months of age, infants can exploit their sensitivity to other minds for action prediction

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission

    Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation

    Get PDF
    In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint

    Do infants provide evidence that the mirror system is involved in action understanding?

    Get PDF
    The mirror neuron theory of action understanding makes predictions concerning how the limited motor repertoire of young infants should impact on their ability to interpret others’ actions. In line with this theory, an increasing body of research has identified a correlation between infants’ abilities to perform an action, and their ability to interpret that action as goal-directed when performed by others. In this paper, I will argue that the infant data does by no means unequivocally support the mirror neuron theory of action understanding and that alternative interpretations of the data should be considered. Furthermore, some of this data can be better interpreted in terms of an alternative view, which holds that the role of the motor system in action perception is more likely to be one of enabling the observer to predict, after a goal has been identified, how that goal will be attained
    corecore