14,751 research outputs found

    Quantum levitation by left-handed metamaterials

    Get PDF
    Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors

    Quantum Breathing of an Impurity in a One-dimensional Bath of Interacting Bosons

    Full text link
    By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is found to be well-described by a single oscillation frequency and a damping rate. If the impurity is very weakly coupled to the bath, a Luttinger-liquid description is valid and the impurity suffers an Abraham-Lorentz radiation-reaction friction. For a large portion of the explored parameter space, the TDMRG results fall well beyond the Luttinger-liquid paradigm.Comment: 10 pages, 7 figures, main text and supplementary material merged in a single PRB style documen

    Boundary element method for resonances in dielectric microcavities

    Full text link
    A boundary element method based on a Green's function technique is introduced to compute resonances with intermediate lifetimes in quasi-two-dimensional dielectric cavities. It can be applied to single or several optical resonators of arbitrary shape, including corners, for both TM and TE polarization. For cavities with symmetries a symmetry reduction is described. The existence of spurious solutions is discussed. The efficiency of the method is demonstrated by calculating resonances in two coupled hexagonal cavities.Comment: 9 pages, 7 figures (quality reduced

    Optical Thomas-Reiche-Kuhn sum rules

    Get PDF
    The Thomas-Reiche-Kuhn sum rule is a fundamental consequence of the position-momentum commutation relation for an atomic electron and it provides an important constraint on the transition matrix elements for an atom. Analogously, the commutation relations for the electromagnetic field operators in a magnetodielectric medium constrain the properties of the dispersion relations for the medium through four sum rules for the allowed phase and group velocities for polaritons propagating through the medium. These rules apply to all bulk media including the metamaterials designed to provide negative refractive indices. An immediate consequence of this is that it is not possible to construct a medium in which all the polariton modes for a given wavelength lie in the negative-index region

    Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates

    Full text link
    Finite temperature simulations are used to study quadrupole excitations of a trapped Bose-Einstein condensate. We focus specifically on the m=0 mode, where a long-standing theoretical problem has been to account for an anomalous variation of the mode frequency with temperature. We explain this behavior in terms of the excitation of two separate modes, corresponding to coupled motion of the condensate and thermal cloud. The relative amplitudes of the modes depends sensitively on the temperature and on the frequency of the harmonic drive used to excite them. Good agreement with experiment is found for appropriate drive frequencies.Comment: 4 pages, 3 figure

    Dynamics of light propagation in spatiotemporal dielectric structures

    Full text link
    Propagation, transmission and reflection properties of linearly polarized plane waves and arbitrarily short electromagnetic pulses in one-dimensional dispersionless dielectric media possessing an arbitrary space-time dependence of the refractive index are studied by using a two-component, highly symmetric version of Maxwell's equations. The use of any slow varying amplitude approximation is avoided. Transfer matrices of sharp nonstationary interfaces are calculated explicitly, together with the amplitudes of all secondary waves produced in the scattering. Time-varying multilayer structures and spatiotemporal lenses in various configurations are investigated analytically and numerically in a unified approach. Several new effects are reported, such as pulse compression, broadening and spectral manipulation of pulses by a spatiotemporal lens, and the closure of the forbidden frequency gaps with the subsequent opening of wavenumber bandgaps in a generalized Bragg reflector

    Alternative Fourier Expansions for Inverse Square Law Forces

    Get PDF
    Few-body problems involving Coulomb or gravitational interactions between pairs of particles, whether in classical or quantum physics, are generally handled through a standard multipole expansion of the two-body potentials. We discuss an alternative based on a compact, cylindrical Green's function expansion that should have wide applicability throughout physics. Two-electron "direct" and "exchange" integrals in many-electron quantum systems are evaluated to illustrate the procedure which is more compact than the standard one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Coulomb field of an accelerated charge: physical and mathematical aspects

    Get PDF
    The Maxwell field equations relative to a uniformly accelerated frame, and the variational principle from which they are obtained, are formulated in terms of the technique of geometrical gauge invariant potentials. They refer to the transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge invariant "2+2" decomposition is used to see how the Coulomb field of a charge, static in an accelerated frame, has properties that suggest features of electromagnetism which are different from those in an inertial frame. In particular, (1) an illustrative calculation shows that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and the charge induced on the surface whose history is the event horizon, and (2) a spectral decomposition of the Coulomb potential in the accelerated frame suggests the possibility that the distortive effects of this charge on the Rindler vacuum are akin to those of a charge on a crystal lattice.Comment: 27 pages, PlainTex. Related papers available at http://www.math.ohio-state.edu/~gerlac
    • …
    corecore