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Abstract

Left-handed metamaterials make perfect lenses that image classical elec-
tromagnetic fields with significantly higher resolution than the diffraction
limit. Here we consider the quantum physics of such devices. We show that
the Casimir force of two conducting plates may turn from attraction to re-
pulsion if a perfect lens is sandwiched between them. For optical left-handed
metamaterials this repulsive force of the quantum vacuum may levitate ultra-
thin mirrors.
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Left-handed metamaterials [1]-[3] are known to make perfect lenses [4] that image
classical electromagnetic fields with higher resolution than the diffraction limit. Here
we consider the quantum physics of such devices, in particular how they modify the
zero-point energy of the electromagnetic field and the resulting mechanical force of
the quantum vacuum, the Casimir force [5]-[9]. We show that the Casimir force
of two conducting plates may turn from attraction to repulsion if a perfect lens
is sandwiched between them. For optical left-handed metamaterials [10]-[14], this
repulsive force of the quantum vacuum may levitate ultra-thin mirrors on, literally,
nothing. The usually attractive vacuum forces [6], the Casimir and the related van-
der-Waals force [6], are significant on the length scale of nanomachines [9]; so ideas
for manipulating vacuum forces may find applications in nanotechnology [15].

Repulsive Casimir forces [16]-[22] have been predicted to occur between two dif-
ferent extended dielectric plates, in the extreme case [17] between one dielectric with
infinite electric permittivity ε and another one with infinite magnetic permeability
µ. They have not been practical yet and are subject to controversy [19, 20]. The
closely related case of repulsive van der Waals forces has been studied as well [23].
Here we consider a different situation inspired by Casimir’s original idea [5]: imagine
instead of two extended dielectric plates two perfect conductors with a metamaterial
sandwiched in between for which ε = µ = −1 (Fig. 1A). Such materials can be made
of nanofabricated metal structures [10]-[14]. One of the conducting plates may be
very thin and movable, which gives a key advantage in observing repulsive vacuum
forces.

In the following we develop a visual argument why the Casimir force in this set-up
is repulsive. We utilize the fact that a slab of a metamaterial with ε = µ = −1 acts as
a transformation medium [24]. Transformation media [24, 25] map electromagnetic
fields in physical space to the electromagnetism of empty flat space.1 Such media are
at the heart of macroscopic invisibility devices [25]-[28]. Note that electromagnetic
analogues of the event horizon [30, 31] are also manifestations of transformation
media [24].

A transformation medium performs an active coordinate transformation: elec-
tromagnetism in physical space, including the effect of the medium, is equivalent
to electromagnetism in transformed coordinates where space appears to be empty.
The sole function of the device is to facilitate this transformation. For example, a
metamaterial with ε = µ = −1 of thickness b (Fig. 1A) transforms the Cartesian
coordinate x into x′ as [24] (Fig. 1B)

x′ =







x for x < 0
−x for 0 ≤ x ≤ b

x − 2b for x > b
. (1)

This transformation property of the medium visually explains [24] that the material
acts as a perfect lens [4]: the electromagnetic field in the range −b < x < 0 is
mapped into x′, but x′ has two more images in physical space, one inside the device
and one in b < x < 2b. Since these are faithful transformations the images are
perfect. Note that the transformed coordinate system {x′, y, z} is left-handed [24]

1 A quantum theory of light in spatial transformation media has been developed in Ref. [29].
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Figure 1: Casimir effect of left-handed metamaterials. (A) illustrates a material with
ε = µ = −1 sandwiched between two mirrors. (B) shows how the medium transforms the
Casimir cavity of size a in physical x space into a cavity in x′ space of size a′ according to
equation (1). The attractive Casimir force in x′ space moves the mirrors further apart in
x space: the Casimir effect in physical space is repulsive.

within the material, which also explains why media with ε = µ = −1 create left-
handed electromagnetism [1, 2]. Hence they are called left-handed metamaterials
[3].

Suppose that this medium is sandwiched between a Casimir cavity of two per-
fect conductors with distance a (Fig. 1A). In transformed space the plate-distance
appears as (Fig. 1B)

a′ = |a − 2b| . (2)

Suppose that a < 2b, i.e. the Casimir plates lie within the imaging range of the
perfect lens. In this case, the cavity in physical space increases when the transformed
cavity decreases. Consequently, the attractive Casimir force in transformed space
turns into a repulsive force in physical space.

In order to derive a quantitative result for the Casimir force, we note that the
electromagnetic spectrum {ων} of the left-handed Casimir cavity is the spectrum of
an empty cavity with distance a′ where ν refers to all possible modes that fit into
the transformed cavity. Each mode corresponds to a quantum harmonic oscillator
with ground-state energy ~ων/2. The total zero-point energy U(a′), the sum of all
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~ων/2, is infinite, but differences between U per area, U , for different plate distances
are finite [6]-[8]. The gradient of the zero-point energy causes a force that becomes
observable when one plate is movable, the Casimir force [5]. For empty cavities, this
force is well-known and has been experimentally observed [9]. In our case, the cavity
has an effective length of a′, but a mechanical length of a. We use the standard result
for Casimir cavities [5] and obtain the force per area

f = −∂U
∂a′

∂a′

∂a
=

~cπ2

240a′4
. (3)

In our argument we made the implicit assumption that the metamaterial per-
forms the left-handed transformation (1) on electromagnetic modes over a sufficient
frequency range, whereas the negatively-refracting metamaterials of present technol-
ogy have been highly dispersive [10]-[14]. In the Appendix we consider the Lifshitz
theory [32]-[33] of the Casimir effect in dispersive materials. We find that the trans-
formation medium is only required to act as a perfect lens for purely imaginary
frequencies that correspond to wavelengths comparable to or larger than 2a′. How-
ever, such imaginary perfect lenses are only possible in media with gain [34], i.e.

in active metamaterials. We give an example that agrees very well with our sim-
ple result (3). We do not expect that the force (3) diverges for a′ → 0, when the
perfect lens images the two plates into each other, because no medium can sustain
ε ∼ µ ∼ −1 for arbitrarily short or arbitrarily long wavelengths [36]. We also show
in the Appendix that passive metamaterials with negative µ, but positive ε, ex-
hibit a repulsive Casimir force, that quantitatively differs from formula (3), but not
qualitatively. Such metamaterials can be made with present technology.

We may speculate how strong the repelling force of the quantum vacuum may
become. We give a rough estimate that indicates that one might levitate one of the
mirrors of the Casimir cavity (Fig. 2). Suppose this mirror is a 0.5µm thin pure
aluminum foil in vacuum (much thicker than the optical skin depth of aluminum
such that it acts as a mirror.) On this foil, with density 2700 kg/m3, the Earth’s
gravity would exert a force per area of about 0.013N/m2. Assuming the left-handed
medium operates for electromagnetic modes of around 1µm wavelength [11]-[14],
the effective plate-distance a′ of the transformed Casimir cavity can be as small
as 0.5µm. In this case, the repulsive Casimir force (3) balances the weight of the
aluminum foil: the foil would levitate, carried by zero-point fluctuations.

Note added. Capasso informed us that a repulsive Casimir force exists between
three dielectrics (for example Silicon, Ethanol and Gold) with µ = 1 if ε1 − ε3 and
ε2−ε3 have different signs in the relevant range of purely imaginary frequencies [35].
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Figure 2: Levitating mirror. The repulsive Casimir force of a left-handed material may
balance the weight of one of the mirrors, letting it levitate on zero-point fluctuations.

1 Appendix

In this appendix, we calculate the Casimir force for a dispersive medium in our set-
up. For this, we use the generalization [33] of Lifshitz’ classic theory of the Casimir
force in media [32]-[38]. First, we express the electromagnetic force density f of the
quantum vacuum in terms of the quantum expectation value σ of Maxwell’s stress
tensor [37],

f = ∇ · σ . (A1)

The vacuum stress turns out to be infinite, but not its divergence, if we adopt the
following regularization procedure: consider instead of the expectation value of the
stress tensor the more general correlation function

σ (r, r′) = τ (r, r′) − 1

2
Tr τ (r, r′)1 (A2)

where 1 denotes the three–dimensional unity matrix, ⊗ describes the tensor product
of two vectors (a matrix F ⊗ G with components Fl Gm) and Tr denotes the trace
of three-dimensional matrices. The matrix τ is defined as the expectation value

τ (r, r′) = ε0〈0|Ê(r) ⊗ Ê(r′) + c2B̂(r) ⊗ B̂(r′)|0〉 (A3)

where ε0 denotes the permittivity of the vacuum. As we will see, σ(r, r′) is finite
for r 6= r′ and approaches infinity for r → r′, but the infinite contribution σ∞(r, r′)
to σ(r, r′) does not exert any electromagnetic force, because ∇ · σ∞(r, r′) turns out
to vanish. Therefore, the part of the vacuum stress that really appears as a force is
finite and given by

σ (r) = lim
r→r

′

(

σ(r, r′) − σ∞(r, r′)
)

. (A4)
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Second, we express the correlation functions 〈0|Ê(r)⊗Ê(r′)|0〉 and 〈0|B̂(r)⊗B̂(r′)|0〉
in terms of the classical electromagnetic Green’s function G(r, r′, ω). The Green’s
function is proportional to the electric field E(r) of a single external dipole placed at
position r′ where it oscillates with frequency ω. The dipole generates electromagnetic
radiation that probes the properties of the medium. This dipolar probe may point
in three possible spatial directions; and so the Green’s function is a matrix where
each column corresponds to any of the directions of the dipole. Mathematically, the
Green’s function is defined as the solution of the inhomogeneous electromagnetic
wave equation

∇× µ−1 ∇× G − ε
ω2

c2
G = 1 δ(r− r′) (A5)

where, in general, the Fourier-transformed electric permittivity ε and magnetic per-
meability µ are complex functions of ω. In the limit of large frequencies ε and µ
tend to unity — all media are transparent to electromagnetic waves with extremely
short wavelengths. Both ε and µ satisfy the crossing relations

ε(−ω∗) = ε∗(ω) , µ(−ω∗) = µ∗(ω) (A6)

and, due to causality [36], the dielectric functions are analytic on the upper half
plane.

According to the quantum theory of light in dispersive and dissipative media
[39]-[41], we can express the correlations functions (A3) in the vacuum stress (A2)
as [33]

〈0|Ê(r) ⊗ Ê(r′)|0〉 = − ~

ε0c2π

∫

∞

0

ξ2 G(r, r′, iξ) dξ ,

〈0|B̂(r) ⊗ B̂(r′)|0〉 =
~

ε0c2π

∫

∞

0

∇× G(r, r′, iξ)×
←−

∇′ dξ (A7)

where
←−

∇′ indicates that differentiations are performed from the right. The Green’s
function is evaluated for purely imaginary frequencies iξ, because here the integrals
(A7) converge nicely, in general. Note that for purely imaginary frequencies the
dielectric functions are real, because of the crossing property (A6), and so is the
Green’s function.

Consider a uniform medium where ε and µ are constant in space. In this case,
we represent the electromagnetic Green’s function G(r, r′, iξ) in terms of the scalar
Green’s function g that obeys the inhomogeneous wave equation

ξ2c−2
(

∇2 − ξ2c−2
)

g = δ(r− r′) . (A8)

We use the identity
(

∇×∇× + κ2
1
) (

∇⊗∇− κ2
1
)

= κ2
1

(

∇2 − κ2
)

(A9)

for κ2 = εµξ2c−2, and see that the solution of the electromagnetic wave equation
(A5) is

G =

√

µ

ε

(

∇⊗∇− εµξ2c−2
1
)

g (
√

εµ(r − r′)) . (A10)
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Uniform media do not feel the force of the quantum vacuum — otherwise they would
disintegrate; but the Green’s function and hence the vacuum stress approaches infin-
ity for r → r′. The infinity of the Green’s function for uniform media characterizes
the infinity in the non-uniform case, because, around the singularity of the delta
function in the wave equation (A5) we can assume the medium to be uniform; the
dominant, diverging contribution to G is given by the uniform Green’s function
(A10) with ε = ε(r′) and µ = µ(r′). On the other hand, we know that this contribu-
tion does not generate a force. In this way, we arrive at a simple recipe for removing
the most severely infinite but physically insignificant contribution σ∞(r, r′) from the
correlation function (A2): σ∞(r, r′) is constructed from the uniform Green’s func-
tion (A10) taking the local values of ε and µ at r′. Equivalently, we can remove
the uniform Green’s functions from the integrals (A7) without changing the vacuum
force.

Consider the Casimir set-up illustrated in Fig. 1 with a left-handed metamaterial
sandwiched between the two mirrors. In order to describe the influence of dispersion
in the simplest possible way, we use a simple toy model: we assume that the medium
acts as a transformation medium for all frequencies,

x′ =







x for x < 0
x/ε(ω) for 0 ≤ x ≤ b

x − b + b/ε(ω) for x > b
, (A11)

but the transformation depends on frequency. Physically, this medium corresponds
to the impedance-matched permittivity and permeability tensors [24]

εj
k = µj

k = diag

(

dx

dx′
,
dx′

dx
,
dx′

dx

)

=

{

1 outside
diag (ε, ε−1, ε−1) inside

. (A12)

Although the medium (A12) performs the coordinate transformation (A11), the
Green’s function G is not the transformed Green’s function of the empty Casimir
cavity, because the source on the right-hand side of the inhomogeneous electro-
magnetic wave equation (A5), the current of the dipolar probe, is not transformed
according to the rules [24]. For example the Green’s function (A5) for the infinitely
extended anisotropic transformation medium (A12) (without the cavity plates) is

Gxx = ±
(

∂x ⊗ ∂x − ξ2c−2ε−2
)

g , GxA = GAx = ±∂x ⊗ ∂Ag ,

GAB = ±
(

∂A ⊗ ∂B − ξ2c−2δAB

)

g , A, B = {y, z} , (A13)

where g is written in transformed coordinates x → x/ε, and the ± refers to the sign
of ε. The Green’s function (A13) is not the transformed uniform Green’s function
(A10). Nevertheless, after solving the wave equation (A5) with the boundary condi-
tions at the cavity plates, subtracting the vacuum Green’s function and calculating
the correlation functions (A7) we obtain the surprisingly simple result

σxx =
~

π2

∫

∞

0

∫

∞

0

wu

e2a′w − 1
du dξ , w2 = u2 + ξ2c−2 , (A14)

Lifshitz’ formula [32] in terms of the transformed cavity distance

a′ = a − b +
b

ε(iξ)
. (A15)
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The medium thus changes the effective cavity size in the Casimir stress according to
the transformations (A11); but, of course, the cavity size a′ depends on frequency.
Note that the off-diagonal components of the stress tensor vanish due to the sym-
metry of our set-up. Inside the Casimir cavity, the vacuum stress is constant, but
not isotropic. Outside of the cavity, the Green’s function G vanishes, and so does
the stress tensor. Consequently, σ jumps from zero to diag(σxx, σyy, σzz) at the in-
ner surface of the Casimir plates. The force density ∇ · σ gives a delta function
at the surface and points in positive x direction at the left plate and in negative x
direction at the right plate, if a′ is positive. In this case, the vacuum stress causes
an attractive force towards the interior.

In the case of negative ε(iξ) the effective cavity size (A15) is negative and so
the Lifshitz integral (A14) diverges, despite our regularization procedure that has
removed the principal singularity of the vacuum stress; but this additional divergence
of (A14) does not contribute to the Casimir force either, because

wu

e2a′w − 1
= − wu

e−2a′w − 1
− wu ; (A16)

the integral of the first term converges and the diverging integral of −wu does not
depend on the cavity at all. Furthermore, the Casimir force changes sign, from
attraction to repulsion, in agreement with our simple argument in the main part of
this paper.

Adopting this additional regularization procedure in spectral regions where a′ is
negative, we express the Casimir force as

f = − ~

π2

∫

∞

0

h(q)

a′3
dξ , q = |a′|ξc−1 . (A17)

To solve the remaining integral for h(q), we use Eq. 2.3.14.5 of Ref. [42], Vol. I, and
obtain

h =
1

4
Li3(e

−2q) +
|q|
2

Li2(e
−2q) − q2

2
ln(1 − e−2q) (A18)

in terms of the polylogarithms Lin(z) =
∑

∞

k=1 zk/kn. Figure 3 shows that the kernel
h(q) is peaked around zero with a width of roughly π. Consequently, if a′ is negative,
but does not vary much for purely imaginary frequencies in the spectral region until
πc/|a′|, we obtain the repulse Casimir force (3), the main quantitative result of this
paper.

However, negative ε(iξ) for positively imaginary frequencies are impossible in
absorptive dielectrics [34]; they can only occur in media with gain. In absorptive
media the imaginary part of ε is positive for real frequencies ω. In this case, causality
— the analyticity of ε(ω) on the upper half plane — implies that ε(iξ) is positive,
see Ref. [34], §123. On the other hand, consider a medium with a single spectral
line of gain described by the simple Drude model [37]

ε(ω) = 1 − 2ω2
0

ω2
0 − ω2 − iγω

(A19)

in the limit of vanishing, but positive gain γ. Figure 4 illustrates the resonance in
ε(ω) and the behavior of ε(iξ) for positively imaginary frequencies where ε remains

8
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Figure 3: Lifshitz kernel. The figure shows the kernel (A18) used in the Lifshitz theory
of the Casimir effect in dispersive materials.

−1 over a sufficiently large range of the spectrum. Figure 5 illustrates the remarkable
accuracy of the simple prediction (3) for the Casimir force in comparison with the
Lifshitz theory for dispersive dielectrics with gain.

One might object that the permittivity tensor (A12) for a transformation medium
has singularities on the upper half plane; and hence the medium is not causal. How-
ever, all that really enters our simple model is the assumption that the medium
performs the transformation (A11) over the relevant range of purely imaginary fre-
quencies; the medium may deviate from the transformation rule (A12) in the vicinity
of a zero in ε(iξ), which results in a more complicated expression for the vacuum
stress, but produces, in very good approximation, the same result.

Moreover, we can relax the assumption that the medium is impedance-matched
and still obtain a repulsive Casimir force, even without gain, as long as µ(iξ) is
greater than ε(iξ) for purely imaginary frequencies over a sufficiently large spectral
range. This is achieved, for example, by setting

ε = 1 , µ(ω) = 1 +
Ω2

ω2
0 − ω2

, (A20)

so that there is just a magnetic response in the material, the permeability being
given by a Drude formula. If we consider the geometrical arrangement of Fig. 2,
where the material is in contact with the lower mirror, then the vertical vacuum
stress at the upper mirror turns out to be

σxx =
~

π2

∫

∞

0

∫

∞

0

uw̺ du dξ ,

̺ =
sw [ε + µ + (K2 + L2) (ε − µ)] + 2 e−2(a−b)w (Lwε − Ks) (Kwµ − Ls)

8 (KNs + LMwε) (LMs + KNwµ)
,

K = sinh(bs), L = cosh(bs), M = sinh [(a − b)w] , N = cosh [(a − b)w] ,

w2 = u2 + ξ2c−2 , s2 = u2 + εµξ2c−2 . (A21)

Figure 6 shows that the Casimir force is repulsive when the distance a − b between

9



the material and the upper mirror is of the order πc/ω0, where ω0 is the resonance
frequency in the Drude formula (A20).
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Figure 4: Gain line. The figures show the electric permittivity ε of an active medium
with a single spectral line of gain. We use the Drude formula (A19) in dimensionless
units with the resonance frequency ω0 = 10. The upper plot shows ε for real frequencies,
whereas the lower plot shows ε for purely imaginary frequencies iξ. On the imaginary
axis, ε is close to −1 in a sufficiently long frequency interval. As long as this interval lies
within (0, πc/|a′|) the Casimir force agrees very well with the simple expression (3), see
also Fig. 5. The behavior of ε for large imaginary frequencies is significantly less relevant
to the Casimir force.
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Figure 5: Comparison. In order to compare the simple formula (3) for the Casimir
force with the result (A17) of the more sophisticated Lifshitz theory, we plot the ratio η
between the Lifshitz force (A17) and the Casimir formula (3) as a function of the cavity
size a (in real space) for b = 3 in dimensionless units.
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Figure 6: Magnetic materials. Casimir force for the arrangement of Fig. 2 with ε and µ
given by (A20), with Ω = 5 and ω0 = 10 in dimensionless units. The force f on the upper
plate is calculated from the stress (A21) and is re-scaled by dividing by the Casimir factor
~cπ2/240. The plot shows f multiplied by the fourth power of the distance a− b between
the plate and the material versus the cavity size a for b = 3.
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