3,190 research outputs found

    Nitrogen isotopes in herbaria document historical nitrogen sewage pollution in the Mersey Estuary, England

    Get PDF
    A macroalgae (seaweed) herbarium nitrogen isotope (δ15N) record is produced for the River Mersey and Liverpool South Docks (England) between 1821 and 2018. A modern macroalgae δ15N record was also produced from September 2022. The herbaria δ15N record shows a stark difference from 1821 to the present. Lower δ15N in the early 1800s is attributed to agricultural and raw sewage pollution. From 1970 to the present the herbaria samples record very elevated δ15N values – peaking in 1978 at +31‰. The 1989 Water Act and privatisation of water companies in the UK had limited impact on the herbarium δ15N record but indicated a dominance of sewage nitrogen in the River Mersey. Macroalgae δ15N has become even more elevated since the last herbaria sample in 2013. The herbaria and modern data record some of the highest seaweed δ15N values (and therefore, sewage nitrogen pollution) recorded to date. This study highlights a novel use of herbaria macroalgae to document past changes in nitrogen pollution in estuarine environments. More poignantly it highlights that the River Mersey – Mersey Estuary is heavily polluted with sewage nitrogen and requires immediate action to resolve this environmental issue

    Casimir forces between cylinders at different temperatures

    Full text link
    We study Casimir interactions between cylinders in thermal non-equilibrium, where the objects as well as the environment are held at different temperatures. We provide the general formula for the force, in a one reflection approximation, for cylinders of arbitrary radii and optical properties. As is the case for equilibrium, we find that the force for optically diluted cylinders can be obtained by appropriate summation of the corresponding result for spheres. We find that the non-equilibrium forces are generally larger than their equilibrium counterpart at separations greater than the thermal wavelength. They may also exhibit oscillations as function of separation, leading to stable points of zero net force. These effects are particularly pronounced for thin conducting cylinders (e.g. 40nm diameter nano-wires of tungsten) due to their large emissivity.Comment: 10 pages, 5 figure

    Spin susceptibility of neutron matter at zero temperature

    Get PDF
    The Auxiliary Field Diffusion Monte Carlo method is applied to compute the spin susceptibility and the compressibility of neutron matter at zero temperature. Results are given for realistic interactions which include both a two-body potential of the Argonne type and the Urbana IX three-body potential. Simulations have been carried out for about 60 neutrons. We find an overall reduction of the spin susceptibilty by about a factor 3 with respect to the Pauli susceptibility for a wide range of densities. Results for the compressibility of neutron matter are also presented and compared with other available estimates obtained for semirealistic nucleon-nucleon interactions by using other techniques

    Atypical presentation of acute pancreatitis in a man with pancreatic insufficiency and cystic fibrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Whether acute pancreatitis can occur in pancreatically insufficient individuals with cystic fibrosis remains a matter of debate.</p> <p>Case presentation</p> <p>We describe a case of acute pancreatitis occurring in a 52-year-old Caucasian Australian man with moderately severe cystic fibrosis lung disease and pancreatic insufficiency. An inflammatory mass within the head of his pancreas was confirmed using computed tomography, magnetic resonance imaging and pancreatic biopsy, but serum amylase and lipase remained normal throughout the acute phase of his illness. His symptoms and the pancreatic mass resolved following the insertion of a biliary stent and the introduction of ursodeoxycholic acid.</p> <p>Conclusion</p> <p>Our case report highlights the potential for acute pancreatitis to occur in patients with pancreatic insufficiency and cystic fibrosis. We further demonstrate that conventional biochemical markers that are normally assessed to confirm the diagnosis may not be of particular use. As patients with cystic fibrosis survive into their fourth and fifth decades of life, atypical presentations of acute pancreatitis may become more common.</p

    The Landscape of Extreme Genomic Variation in the Highly Adaptable Atlantic Killifish

    Get PDF
    Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments

    Secondary school pupils' preferences for different types of structured grouping practices

    Get PDF
    The aim of this paper is to explore pupils’ preferences for particular types of grouping practices an area neglected in earlier research focusing on the personal and social outcomes of ability grouping. The sample comprised over 5,000 year 9 pupils (aged 13-14 years) in 45 mixed secondary comprehensive schools in England. The schools represented three levels of ability grouping in the lower school (years 7 to 9). Pupils responded to a questionnaire which explored the types of grouping that they preferred and the reasons for their choices. The majority of pupils preferred setting, although this was mediated by their set placement, type of school, socio-economic status and gender. The key reason given for this preference was that it enabled work to be matched to learning needs. The paper considers whether there are other ways of achieving this avoiding the negative social and personal outcomes of setting for some pupils

    Spectrophotometric Distances to Galactic H\,{\sc{ii}} Regions

    Full text link
    We present a near infrared study of the stellar content of 35 H\,{\sc{ii}} regions in the Galactic plane. In this work, we have used the near infrared domain JJ-, HH- and KsK_{s}- band color images to visually inspect the sample. Also, color-color and color-magnitude diagrams were used to indicate ionizing star candidates, as well as, the presence of young stellar objects such as classical TTauri Stars (CTTS) and massive young stellar objects (MYSOs). We have obtained {\it Spitzer} IRAC images for each region to help further characterize them. {\it Spitzer} and near infrared morphology to place each cluster in an evolutionary phase of development. {\it Spitzer} photometry was also used to classify the MYSOs. Comparison of the main sequence in color-magnitude diagrams to each observed cluster was used to infer whether or not the cluster kinematic distance is consistent with brightnesses of the stellar sources. We find qualitative agreement for a dozen of the regions, but about half the regions have near infrared photometry that suggests they may be closer than the kinematic distance. A significant fraction of these already have spectrophotometric parallaxes which support smaller distances. These discrepancies between kinematic and spectrophotometric distances are not due to the spectrophotometric methodologies, since independent non-kinematic measurements are in agreement with the spectrophotometric results. For instance, trigonometric parallaxes of star-forming regions were collected from the literature and show the same effect of smaller distances when compared to the kinematic results. In our sample of H\,{\sc{ii}} regions, most of the clusters are evident in the near infrared images. Finally, it is possible to distinguish among qualitative evolutionary stages for these objects.Comment: 59 pages, 146 figures and 4 tables. MNRAS accepte

    Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503

    Get PDF
    Measuring the relative mass contributions of luminous and dark matter in spiral galaxies is important for understanding their formation and evolution. The combination of a galaxy rotation curve and strong lensing is a powerful way to break the disk-halo degeneracy that is inherent in each of the methods individually. We present an analysis of the 10-image radio spiral lens B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for the lens galaxy rotation curve and the source redshift. We construct a three-dimensionally axisymmetric mass distribution with 3 components: an exponential profile for the disk, a point mass for the bulge, and an NFW profile for the halo. The mass model is simultaneously fitted to the kinematics and the lensing data. The NFW halo needs to be oblate with a flattening of a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests that baryons are effective at making the halos oblate near the center. The lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting that the disk is marginally submaximal. The stellar mass of the disk from our modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the cold gas contributes ~20% to the total disk mass. In comparison to the stellar masses estimated from stellar population synthesis models, the stellar initial mass function of Chabrier is preferred to that of Salpeter by a probability factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments, accepted for publication in Ap
    corecore