2,127 research outputs found
Magnetic ordering, electronic structure and magnetic anisotropy energy in the high-spin Mn single molecule magnet
We report the electronic structure and magnetic ordering of the single
molecule magnet [MnO(2,2'-biphenoxide)Br]
based on first-principles all-electron density-functional calculations. We find
that two of the ten core Mn atoms are coupled antiferromagnetically to the
remaining eight, resulting in a ferrimagnetic ground state with total spin
S=13. The calculated magnetic anisotropy barrier is found to be 9 K in good
agreement with experiment. The presence of the Br anions impact the electronic
structure and therefore the magnetic properties of the 10 Mn atoms. However,
the electric field due to the negative charges has no significant effect on the
magnetic anisotropy.Comment: 4 pages, submitted to PR
Coupling to haloform molecules in intercalated C60?
For field-effect-doped fullerenes it was reported that the superconducting
transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br)
crystals, than for pure C60. Initially this was explained by the expansion of
the volume per C60-molecule and the corresponding increase in the density of
states at the Fermi level in the intercalated crystals. On closer examination
it has, however, turned out to be unlikely that this is the mechanism behind
the increase in Tc. An alternative explanation of the enhanced transition
temperatures assumes that the conduction electrons not only couple to the
vibrational modes of the C60-molecule, but also to the modes of the
intercalated molecules. We investigate the possibility of such a coupling. We
find that, assuming the ideal bulk structure of the intercalated crystal, both
a coupling due to hybridization of the molecular levels, and a coupling via
dipole moments should be very small. This suggests that the presence of the
gate-oxide in the field-effect-devices strongly affects the structure of the
fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication
Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole
Firstly we derive peculiar spherical Weyl solutions, using a general
spherically symmetric metric due to a massive charged object with definite mass
and radius. Afterwards, we present new analytical solutions for relevant
cosmological terms, which appear in the metrics. Connecting the metrics to a
new geometric definition of a charged Black Hole, we numerically investigate
the effective potentials of the total dynamical system, considering massive and
massless test particles, moving on such Black Holes.Comment: 8 pages, 5 figure
DFT calculation of the intermolecular exchange interaction in the magnetic Mn dimer
The dimeric form of the single-molecule magnet
[MnOCl(OCEt)(py)] recently revealed interesting
phenomena: no quantum tunneling at zero field and tunneling before magnetic
field reversal. This is attributed to substantial antiferromagnetic exchange
interaction between different monomers. The intermolecular exchange
interaction, electronic structure and magnetic properties of this molecular
magnet are calculated using density-functional theory within
generalized-gradient approximation. Calculations are in good agreement with
experiment.Comment: 4 page
Velocity of sound in a Bose-Einstein condensate in the presence of an optical lattice and transverse confinement
We study the effect of the transverse degrees of freedom on the velocity of
sound in a Bose-Einstein condensate immersed in a one-dimensional optical
lattice and radially confined by a harmonic trap. We compare the results of
full three-dimensional calculations with those of an effective 1D model based
on the equation of state of the condensate. The perfect agreement between the
two approaches is demonstrated for several optical lattice depths and
throughout the full crossover from the 1D mean-field to the Thomas Fermi regime
in the radial direction.Comment: final versio
On the energy leakage of discrete wavelet transform
The energy leakage is an inherent deficiency of discrete wavelet transform (DWT) which is often ignored by researchers and practitioners. In this paper, a systematic investigation into the energy leakage is reported. The DWT is briefly introduced first, and then the energy leakage phenomenon is described using a numerical example as an illustration and its effect on the DWT results is discussed. Focusing on the Daubechies wavelet functions, the band overlap between the quadrature mirror analysis filters was studied and the results reveal that there is an unavoidable tradeoff between the band overlap degree and the time resolution for the DWT. The dependency of the energy leakage to the wavelet function order was studied by using a criterion defined to evaluate the severity of the energy leakage. In addition, a method based on resampling technique was proposed to relieve the effects of the energy leakage. The effectiveness of the proposed method has been validated by numerical simulation study and experimental study
Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory
We use first principles density functional theory to calculate electronic and
magnetic properties of TiF3 using the full potential linearized augmented plane
wave method. The LDA approximation predicts a fully saturated ferromagnetic
metal and finds degenerate energy minima for high and low symmetry structures.
The experimentally observed Jahn-Teller phase transition at Tc=370K can not be
driven by the electron-phonon interaction alone, which is usually described
accurately by LDA.
Electron correlations beyond LDA are essential to lift the degeneracy of the
singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are
important, the direction of the t2g-level splitting is determined by the
dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic
insulator with an orbitally ordered ground state. The input parameters U=8.1 eV
and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on
the TiF ion using the molecular NRLMOL code. We estimate the
Heisenberg exchange constant for spin-1/2 on a cubic lattice to be
approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per
TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.
Low-Lying Excitations from the Yrast Line of Weakly Interacting Trapped Bosons
Through an extensive numerical study, we find that the low-lying,
quasi-degenerate eigenenergies of weakly-interacting trapped N bosons with
total angular momentum L are given in case of small L/N and sufficiently small
L by E = L hbar omega + g[N(N-L/2-1)+1.59 n(n-1)/2], where omega is the
frequency of the trapping potential and g is the strength of the repulsive
contact interaction; the last term arises from the pairwise repulsive
interaction among n octupole excitations and describes the lowest-lying
excitation spectra from the Yrast line. In this case, the quadrupole modes do
not interact with themselves and, together with the octupole modes, exhaust the
low-lying spectra which are separated from others by N-linear energy gaps.Comment: 5 pages, RevTeX, 2 figures, revised version, submitted to PR
Theory of a magnetic microscope with nanometer resolution
We propose a theory for a type of apertureless scanning near field microscopy
that is intended to allow the measurement of magnetism on a nanometer length
scale. A scanning probe, for example a scanning tunneling microscope (STM) tip,
is used to scan a magnetic substrate while a laser is focused on it. The
electric field between the tip and substrate is enhanced in such a way that the
circular polarization due to the Kerr effect, which is normally of order 0.1%
is increased by up to two orders of magnitude for the case of a Ag or W tip and
an Fe sample. Apart from this there is a large background of circular
polarization which is non-magnetic in origin. This circular polarization is
produced by light scattered from the STM tip and substrate. A detailed retarded
calculation for this light-in-light-out experiment is presented.Comment: 17 pages, 8 figure
Effects of bearing clearance on the chatter stability of milling process
In the present study, the influences of the bearing clearance, which is a common fault for machines, to the chatter stability of milling process are examined by using numerical simulation method. The results reveal that the presence of bearing clearance could make the milling process easier to enter the status of chatter instability and can shift the chatter frequency. In addition, the spectra analysis to vibration signals obtained under the instable milling processes show that the presence of bearing clearance could introduce more frequency components to the vibration responses but, however, under both the stable and instable milling processes, the generated frequency components will not violate the ideal spectra structures of the vibration responses of the milling process, which are usually characterized by the tooth passing frequency and its associated higher harmonics for the stable milling process and by the complex coupling of the tooth passing frequency and the chatter frequency for the instable milling process. This implies that, even under the case with bearing clearance fault, the stability of the milling process can still be determined by viewing the frequency spectra of the vibration responses. Moreover, the phenomena of the chatter frequency shift and the generation of more components provide potential ways to detect the bearing clearance in machines. (C) 2010 Elsevier Ltd. All rights reserved
- …
