4,201 research outputs found
Space biology initiative program definition review. Trade study 2: Prototype utilization in the development of space biology hardware
The objective was to define the factors which space flight hardware developers and planners should consider when determining: (1) the number of hardware units required to support program; (2) design level of the units; and (3) most efficient means of utilization of the units. The analysis considered technology risk, maintainability, reliability, and safety design requirements for achieving the delivery of highest quality flight hardware. Relative cost impacts of the utilization of prototyping were identified. The development of Space Biology Initiative research hardware will involve intertwined hardware/software activities. Experience has shown that software development can be an expensive portion of a system design program. While software prototyping could imply the development of a significantly different end item, an operational system prototype must be considered to be a combination of software and hardware. Hundreds of factors were identified that could be considered in determining the quantity and types of prototypes that should be constructed. In developing the decision models, these factors were combined and reduced by approximately ten-to-one in order to develop a manageable structure based on the major determining factors. The Baseline SBI hardware list of Appendix D was examined and reviewed in detail; however, from the facts available it was impossible to identify the exact types and quantities of prototypes required for each of these items. Although the factors that must be considered could be enumerated for each of these pieces of equipment, the exact status and state of development of the equipment is variable and uncertain at this time
Space biology initiative program definition review. Trade study 3: Hardware miniaturization versus cost
The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided
Space biology initiative program definition review. Trade study 4: Design modularity and commonality
The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided
Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility
The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed
A PCA-based automated finder for galaxy-scale strong lenses
We present an algorithm using Principal Component Analysis (PCA) to subtract
galaxies from imaging data, and also two algorithms to find strong,
galaxy-scale gravitational lenses in the resulting residual image. The combined
method is optimized to find full or partial Einstein rings. Starting from a
pre-selection of potential massive galaxies, we first perform a PCA to build a
set of basis vectors. The galaxy images are reconstructed using the PCA basis
and subtracted from the data. We then filter the residual image with two
different methods. The first uses a curvelet (curved wavelets) filter of the
residual images to enhance any curved/ring feature. The resulting image is
transformed in polar coordinates, centered on the lens galaxy center. In these
coordinates, a ring is turned into a line, allowing us to detect very faint
rings by taking advantage of the integrated signal-to-noise in the ring (a line
in polar coordinates). The second way of analysing the PCA-subtracted images
identifies structures in the residual images and assesses whether they are
lensed images according to their orientation, multiplicity and elongation. We
apply the two methods to a sample of simulated Einstein rings, as they would be
observed with the ESA Euclid satellite in the VIS band. The polar coordinates
transform allows us to reach a completeness of 90% and a purity of 86%, as soon
as the signal-to-noise integrated in the ring is higher than 30, and almost
independent of the size of the Einstein ring. Finally, we show with real data
that our PCA-based galaxy subtraction scheme performs better than traditional
subtraction based on model fitting to the data. Our algorithm can be developed
and improved further using machine learning and dictionary learning methods,
which would extend the capabilities of the method to more complex and diverse
galaxy shapes
Doing more with less: the flagellar end piece enhances the propulsive effectiveness of human spermatozoa
Spermatozoa self-propel by propagating bending waves along a predominantly
active elastic flagellum. The organized structure of the "9 + 2" axoneme is
lost in the most-distal few microns of the flagellum, and therefore this region
is unlikely to have the ability to generate active bending; as such it has been
largely neglected in biophysical studies. Through elastohydrodynamic modeling
of human-like sperm we show that an inactive distal region confers significant
advantages, both in propulsive thrust and swimming efficiency, when compared
with a fully active flagellum of the same total length. The beneficial effect
of the inactive end piece on these statistics can be as small as a few percent
but can be above 430%. The optimal inactive length, between 2-18% of the total
length, depends on both wavenumber and viscous-elastic ratio, and therefore is
likely to vary in different species. Potential implications in evolutionary
biology and clinical assessment are discussed.Comment: To Appear, Physical Review Fluids. 25 pages, 14 figure
National First Peoples Gathering on Climate Change
Our purpose in hosting the National First Peoples Gathering on Climate Change (the Gathering) was to celebrate, learn from and enhance First Peoples-led climate action. We set out to strengthen kinships, cultural identity and well-being, and to strengthen caring for Country by using both Indigenous and scientific knowledge. The Gathering supported this overall purpose through five aims:• Bring Traditional Owners together to share with one another about climate change • Share scientific information in a form useful for Traditional Owners• Identify options for policy to respond to climate change • Provide tangible information to take back to communities• Highlight First Peoples’ climate change actions. 110 Traditional Owners from across Australia attended the Gathering
Dark energy with gravitational lens time delays
Strong lensing gravitational time delays are a powerful and cost effective
probe of dark energy. Recent studies have shown that a single lens can provide
a distance measurement with 6-7 % accuracy (including random and systematic
uncertainties), provided sufficient data are available to determine the time
delay and reconstruct the gravitational potential of the deflector.
Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one
to break degeneracies in the interpretation of data from higher-redshift probes
like the cosmic microwave background in terms of the dark energy equation of
state. Current studies are limited by the size of the sample of known lensed
quasars, but this situation is about to change. Even in this decade, wide field
imaging surveys are likely to discover thousands of lensed quasars, enabling
the targeted study of ~100 of these systems and resulting in substantial gains
in the dark energy figure of merit. In the next decade, a further order of
magnitude improvement will be possible with the 10000 systems expected to be
detected and measured with LSST and Euclid. To fully exploit these gains, we
identify three priorities. First, support for the development of software
required for the analysis of the data. Second, in this decade, small robotic
telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will
transform the field by delivering accurate time delays for ~100 systems. Third,
in the 2020's, LSST will deliver 1000's of time delays; the bottleneck will
instead be the aquisition and analysis of high resolution imaging follow-up.
Thus, the top priority for the next decade is to support fast high resolution
imaging capabilities, such as those enabled by the James Webb Space Telescope
and next generation adaptive optics systems on large ground based telescopes.Comment: White paper submitted to SNOWMASS201
- …