22 research outputs found

    Estimates of abundance and trend on a Blue Whale feeding ground off Isla de Chiloé, Chile

    Get PDF
    Since 1970, blue whales (Balaenoptera musculus) have been seen feeding in the waters off southern Chile during the summer and autumn (December to May). Investigation of the genetic, acoustic and morphological characteristics of these blue whales shows that they are a distinct but unnamed subspecies, called the Chilean blue whales. Photo-identification surveys have been conducted in the waters off northwestern Isla Grande de ChiloĂ©, southern Chile from 2004–2012 and Isla Chañaral, central Chile in 2012. Over this time, 1,070 blue whales were encountered yielding, after photo-quality control, 318 and 267 unique photographs of the left and right side of the flank respectively. Using mark-recapture analysis of left and right side photographs collected from Isla Grande de ChiloĂ© (2004–2012), open population models estimate that ~570–760 whales are feeding seasonally in this region. POPAN superpopulation abundance estimates for the same feeding ground in 2012 are 762 (95% confidence intervals, CI = 638–933) and 570 (95% CI 475–705) for left and right side datasets respectively, very similar to results from closed population models. Estimates of trend revealed strong variation in abundance, peaking in 2009 and [suggesting] fluctuating use in the survey area over time, likely related to the density of their prey. High inter-annual return rates suggest a degree of site-fidelity of individuals to Isla Grande de ChiloĂ© and that the number of whales using this feeding ground is relatively small

    Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Get PDF
    ELC was supported while writing this paper by a EU Horizon 2020 Marie Slodowska Curie Fellowship, project BEHAVIOUR-CONNECT, by a Newton Fellowship from the Royal Society of London and Bayesian statistical training was supported by National Science Foundation (award DEB- 1145200). Laboratory analyses conducted by ELC were funded by a small grant from the British Ecological Society 5076 / 6118 and Bayesian analysis was supported by training from the National Science Foundation under Grant No. DEB-1145200. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Founding Council (grant reference HR09011). Genetic data from the South African right whale samples were generated by MB and PJP with the support of UC Berkeley, University of Stockholm and University of Groningen. Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award.Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesis that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation.PostprintPeer reviewe

    Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations.

    Get PDF
    Understanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales

    Noble gases recycled into the mantle through cold subduction zones

    No full text
    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole – a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5–35% and 60–80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior

    Noble gases recycled into the mantle through cold subduction zones

    No full text
    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole – a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5–35% and 60–80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior

    Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions

    No full text
    New laboratory thermal infrared emissivity measurements of the plagioclase solid solution series over the 1700∌400cm-1 (6-25m) spectral range are presented. Thermal infrared (TIR) spectral changes for fine-particulate samples (0-25m) are characterized for the first time under different laboratory environmental conditions: ambient (terrestrial-like), half-vacuum (Mars-like), vacuum, and vacuum with cooled chamber (lunar-like). Under all environmental conditions the Christiansen Feature (CF) is observed to vary in a systematic way with Na-rich end-member (albite) having a CF position at the highest wave number (shortest wavelength) and the Ca-rich end-member (anorthite) having a CF position with the lowest wave number (longest wavelength). As pressure decreases to<10-3mbar four observations are made: (1) the CF position shifts to higher wave numbers, (2) the spectral contrast of the CF increases relative to the RB, (3) the spectral contrast of the RB in the ∌1200-900 spectral range decreases while the spectral contrast of the RB in the ∌800-400 spectral range either increases or remains the same and (4) the TF disappears. A relationship between the wavelength position of the CF measured under simulated lunar conditions and plagioclase composition (An#) is developed. Although its exact form may evolve with additional data, this linear relationship should be applied to current and future TIR data sets of the Moon. Our new spectral measurements demonstrate how sensitive thermal infrared emissivity spectra of plagioclase feldspars are to the environmental conditions under which they are measured and provide important constraints for interpreting current and future thermal infrared data sets. © 2012 American Geophysical Union. All Rights Reserved
    corecore